2.1 EXERCISE 1 - measuring enthalpy changes

In all the following questions, assume that the densities and specific heat capacities of the solutions are the same as pure water i.e. $\rho=1.0 \mathrm{gcm}^{-3}$ and $\mathrm{c}=4.18 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$

1. Zinc will displace copper from copper (II) sulphate solution according to the following equation:
$\mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{ZnSO}_{4}(\mathrm{aq})$
If an excess of zinc powder is added to $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{moldm}^{-3}$ copper(II) sulphate, the temperature increases by $6.3^{\circ} \mathrm{C}$. Calculate the enthalpy change for the reaction.
2. Magnesium will also displace copper from copper (II) sulphate solution. If an excess of magnesium is added to $100 \mathrm{~cm}^{3}$ of 1.0 moldm $^{-3}$ copper(II) sulphate, the temperature increases by $46.3^{\circ} \mathrm{C}$.
a) Calculate the molar enthalpy change for the reaction
b) Calculate the minimum quantity of magnesium required to ensure it is in excess.
c) Calculate the temperature change if only 0.8 g of magnesium is added.
3. When 5.73 g of sodium chloride (NaCl) dissolves in $100 \mathrm{~cm}^{3}$ of water, the temperature of the water fell from $22.4^{\circ} \mathrm{C}$ to $19.8^{\circ} \mathrm{C}$. Calculate the enthalpy change of the reaction.
4. When 2.3 g of magnesium chloride dissolves in $200 \mathrm{~cm}^{3}$ of water, the temperature rose by $3.4^{\circ} \mathrm{C}$. Calculate the enthalpy change for the reaction.
5. If $50 \mathrm{~cm}^{3}$ of 0.1 moldm $^{-3} \mathrm{HCl}$ and $50 \mathrm{~cm}^{3}$ of $0.1 \mathrm{moldm}^{-3} \mathrm{NaOH}$ are mixed, the temperature of the solution rises by $0.68{ }^{\circ} \mathrm{C}$. Calculate the enthalpy change of the reaction in kJmol^{-1}.
6. If $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{moldm}^{-3} \mathrm{NaOH}$ is added to $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{moldm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}$, the temperature rose by $8.3^{\circ} \mathrm{C}$. Calculate the molar enthalpy change for the reaction.

