
The TaskJuggler Manual

Chris Schläger

Marc Rührschneck

The TaskJuggler Manual
by Chris Schläger and Marc Rührschneck

Copyright © 2001, 2002, 2003, 2004, 2005 Chris Schläger

This document describes TaskJuggler version 2.1.1

Table of Contents
About this document.. viii
1. Introduction..1

1.1. About TaskJuggler ..1
1.2. Features and Highlights ..1
1.3. TaskJuggler on the Web ..2
1.4. Change Log ...2

1.4.1. Version 1.0.0 (2002-03-14)...2
1.4.2. Version 1.0.1 (2002-03-15)...2
1.4.3. Version 1.1 (2002-05-27)..3
1.4.4. Version 1.2 (2002-06-17)..3
1.4.5. Version 1.3 (2002-07-30)..4
1.4.6. Version 1.4 (2002-12-18)..5
1.4.7. Version 1.4.1 (2003-02-24)...6
1.4.8. Version 1.4.2 (2003-03-10)...7
1.4.9. Version 1.9.0-unstable (2003-06-25)..7
1.4.10. Version 1.9.1-unstable (2003-07-29)..8
1.4.11. Version 1.9.2-unstable (2003-09-05)..9
1.4.12. Version 2.0.0 (2003-11-24)...9
1.4.13. Version 2.0.1 (2004-03-08)...10
1.4.14. Version 2.1.0 (2005-03-07)...10
1.4.15. Version 2.1.1 (2005-08-04)...11

1.5. How to Contribute...12
1.5.1. Why contribute? ...12
1.5.2. Preparing a contribution ...12
1.5.3. Creating a Patch..13
1.5.4. Contributing Translations ...13
1.5.5. Some final words to Contributors ...13

2. Installation..15
2.1. Obtaining TaskJuggler ..15
2.2. The TaskJuggler Components ...15

2.2.1. The Graphical User Interfaces..15
2.2.2. The command line tool taskjuggler ..16
2.2.3. The TaskJuggler Documentation ..16
2.2.4. tjx2gantt - Transforms XML files to Postscript Gantt charts16
2.2.5. Contributed Stuff ..17

2.3. Compilation and Installation...17

3. Usage ...19
3.1. Basics ..19
3.2. General Usage ...19
3.3. The Command Line Options...20
3.4. Reporting Bugs and Sending Feedback ..20

iii

4. Tutorial: Your First Project ..21
4.1. Starting the project ..21
4.2. Global Attributes ...22
4.3. Declaring Resources ...22
4.4. Declaring Accounts...24
4.5. Specifying the Tasks ...24
4.6. Specifying Milestones...29
4.7. Generating Reports of the scheduled Project ..30

4.7.1. Generating Interactive Reports ...30
4.7.2. Generating HTML Reports...31
4.7.3. Generating HTML Task Reports ..32
4.7.4. Generating HTML Resource Reports...33
4.7.5. Generating HTML Account Reports ..34
4.7.6. Generating XML Reports ...35

5. Usage Guide..36
5.1. Tracking the Project ..36

5.1.1. Recording Progress...36
5.1.2. Recording Resource Usage...37

5.2. Freezing your project as it progresses...39

6. Language Reference ..41
6.1. Comments ...41
6.2. Attribute Classes ...41

6.2.1. DATE ..41
6.2.2. DATEINTERVAL...41
6.2.3. GLOBAL_ID..41
6.2.4. ID..41
6.2.5. INTEGER...41
6.2.6. LOGICALEXPRESSION ..41
6.2.7. REAL..43
6.2.8. SORTINGCRITERIA...43
6.2.9. STRING..43
6.2.10. TIME ..44
6.2.11. TIME ..44
6.2.12. UNIT...44
6.2.13. WEEKDAY ..44

7. Property Reference ..45
7.1. The TJP File ..45
7.2. account <id> <name> [<type>] ...45
7.3. account <accountid> ...47
7.4. accumulate ..48
7.5. allowredefinition ...50
7.6. allocate <resource> ...50
7.7. alternative <resource> [, <resource> ...]...51
7.8. barlabels <mode> ..52
7.9. booking <start> <end> <task>...52
7.10. caption <text>...53

iv

7.11. celltext <text>...54
7.12. cellurl <url> ..56
7.13. columns <columnid> [, <columnid> ...]..57
7.14. complete <percent> ...60
7.15. copyright <text> ...61
7.16. credit <date> <description> <amount>..62
7.17. csvaccountreport <filename>...64
7.18. csvresourcereport <filename> ...64
7.19. csvtaskreport <filename>...65
7.20. currency <text>...65
7.21. currencyformat <negativeprefix> <negativesuffix> <thousandseparator>

<fractionseparator> <fractiondigits>...66
7.22. dailymax <value> <unit> ...67
7.23. dailyworkinghours <hours> ..68
7.24. depends <task> [, <task> ...] ...69
7.25. disabled ...71
7.26. duration <value> <unit>...71
7.27. efficiency <value>...72
7.28. effort <value> <unit> ...73
7.29. end <date>...75
7.30. end <date>...75
7.31. endbuffer <percent>...76
7.32. endcredit <amount> ...77
7.33. export <filename>..79
7.34. extend <property> ...80
7.35. flags <flag> [, <flag> ...]...81
7.36. flags <flag> [, <flag> ...]...82
7.37. gapduration <value> <unit> ...83
7.38. gaplength <value> <unit> ..84
7.39. headline <text> ...85
7.40. hideaccount <logicalexpression> ...86
7.41. hidecelltext <expression>...86
7.42. hidecellurl <expression> ..88
7.43. hideresource <logicalexpression> ..89
7.44. hidetask <logicalexpression> ...90
7.45. htmlaccountreport <file> ...92
7.46. htmlresourcereport <file> ..93
7.47. htmlstatusreport <file>...93
7.48. htmltaskreport <file> ...94
7.49. htmlweeklycalendar <file> ..94
7.50. icalreport <file> ...95
7.51. include <file>...96
7.52. journalentry <date> <text>...97
7.53. kotrusid <id>..97
7.54. label <text>...98
7.55. length <value> <unit> ..99
7.56. limits..100
7.57. load <factor> ...101

v

7.58. loadunit <unit> ...101
7.59. macro <id>...102
7.60. mandatory..103
7.61. maxeffort <workingdays>..104
7.62. maxend <date>..104
7.63. maxstart <date>...105
7.64. minend <date>...106
7.65. minstart <date> ...106
7.66. milestone ...107
7.67. note <text>..108
7.68. monthlymax <value> <unit> ..108
7.69. now <date>..109
7.70. numberformat <negativeprefix> <negativesuffix> <thousandseparator>

<fractionseparator> <fractiondigits>...110
7.71. persistent ...111
7.72. priority <value> ..111
7.73. precedes <task> [, <task> ...]...113
7.74. project <id> <name> <version> <start> <end> ..113
7.75. projectid <id>...115
7.76. projectids <projectid> [, <projectid> ...] ...115
7.77. projection ..116
7.78. properties <property> [, <property> ...] ...116
7.79. rate <value> ..117
7.80. rawhead <html> ...119
7.81. rawstylesheet <stylesheet>..119
7.82. rawtail <html>..120
7.83. reference <url>..120
7.84. resource <id> <name> ...121
7.85. resourcereport <file> ...122
7.86. responsible <resource>..123
7.87. rollupaccount <logicalexpression> ..124
7.88. rollupresrouce <logicalexpression> ...124
7.89. rolluptask <logicalexpression> ..125
7.90. scenario <id> <name> ...125
7.91. scenario <scenarioid> ..126
7.92. scenarios <scenarioid> [, <scenarioid> ...]..126
7.93. scheduled...127
7.94. scheduling <type> ...127
7.95. select <mode> ...129
7.96. sloppy <value>..130
7.97. shift <id> <name> ...131
7.98. shift <shiftid> [<dateinterval>]...132
7.99. shorttimeformat <format> ..134
7.100. showprojectids...134
7.101. sortaccounts <criteria> [, <criteria> ...] ...134
7.102. sortresources <criteria> [, <criteria> ...] ..135
7.103. sorttasks <criteria> [, <criteria> ...] ...135
7.104. start <date>..137

vi

7.105. start <date>..138
7.106. startbuffer <percent>..139
7.107. startcredit <amount> ..140
7.108. statusnote <text>...142
7.109. subtitle <text>...142
7.110. subtitleurl <url> ..143
7.111. supplement <type> ..145
7.112. task <id> <name> ..146
7.113. taskattributes <attribute> [, <attribute> ...] ..147
7.114. taskprefix <prefix> ..148
7.115. taskreport <file>...149
7.116. taskroot <root>..150
7.117. timezone <zone>..151
7.118. timeformat <format> ..152
7.119. timingresolution <value> <unit>..153
7.120. title <text> ..154
7.121. titleurl <url> ..155
7.122. vacation <name> <interval> ..157
7.123. vacation <interval> ..158
7.124. version <number> ..159
7.125. weeklymax <value> <unit>..160
7.126. weekstartsmonday...161
7.127. weekstartssunday ..162
7.128. workinghours <weekday> <interval> [, <interval> ...] ..162
7.129. xmlreport <file>...163
7.130. yearlyworkingdays <days>..164

8. The Example: Accounting Software ..166
9. Migrating from TaskJuggler 1.x to 2.x ..173

9.1. Achiving compatibility..173
9.1.1. Syntax changes ...173
9.1.2. Scheduler changes ..174

10. Questions and Answers ...175
10.1. General Questions ...175
10.2. Compiling and installation ..175
10.3. Usage...175

11. Copyright..176
12. Trademarks ..177

vii

About this document

This document describes TaskJuggler version 2.1.1

The TaskJuggler manual consists of two parts. The first part contains general usage information and a
tutorial. The tutorial is highly recommended for all first-time TaskJuggler users. It is a very good
introduction to many TaskJuggler concepts and features. The second part is the language reference.

viii

Chapter 1. Introduction

1.1. About TaskJuggler

TaskJuggler is a project planing tool for Linux and UNIX system-based operating systems. Whether you
want to build a skyscraper or plan your colleagues shifts for the next month - TaskJuggler is the tool for
you.

Instead of clicking yourself painfully through hundreds of dialog boxes you specify your TaskJuggler
project in a simple text format. You write down all your tasks with their dependencies and other
properties using the graphical front-end or your favorit text editor. The information is processed by the
TaskJuggler program and you will get all sorts of reports in an interactive format or as HTML or XML
format. The HTML files can be viewed and printed with any web browser that supports Cascading Style
Sheets. JavaScript support is recommended. The XML files are used by the Gantt- and PERT chart
generators and the KDE (http://www.kde.org) Konqueror (http://konqueror.kde.org) plug-in.

TaskJuggler does not only honor the task interdependencies but also takes resource constrains and
prioritization into account. Using TaskJugglers powerful filtering and reporting algorithms you can
create a variety of task lists, resource usage tables, status reports, project calendars and project
accounting statements.

Since TaskJuggler is not constrained by the performance requirements of real-time editing it can offer a
much broader set of features not found in any of the WYSIWYG (What You See Is What You Get)
project planing tools. The the project description language is easy to learn and supports you very
effectively during your planing and tracking process.

1.2. Features and Highlights

• Automatic scheduling of interdependent tasks with resource conflict solver.

• Powerful project description syntax with macro support.

• Graphical front-end to enter and view your project.

• Flexible working hours and vacation handling.

• Support for shifts.

• Multiple time zone support.

• Flexible resource grouping.

• Project accounting support.

• Task may have initial, finishing and running costs.

1

Chapter 1. Introduction

• Resource may have running costs.

• Support for simple profit and loss analysis.

• HTML and XML report generation.

• Gantt and PERT chart generators.

• Support for multiple project scenarios.

• Project tracking support.

• Groupware support by using a revision control system such as CVS or RCS on the project description
files.

• Support for central resource allocation database.

• Support for cascaded and nested projects.

• Import and export of sub-projects.

• Unicode support.

1.3. TaskJuggler on the Web

The official TaskJuggler web site can be found at http://www.taskjuggler.org
(http://www.taskjuggler.org).

Since the developers are mostly busy project managers themselves, we have created a forum
(http://www.taskjuggler.org/FUDforum2) for users to help each other.

The TaskJuggler project has been sponsored by SUSE for several years. After the aquistion by Novell
(www.novell.com) the sponsorship continued. They kindly host our web presence and our Bugtracking
System (http://bugzilla.novell.com).

1.4. Change Log

1.4.1. Version 1.0.0 (2002-03-14)

• Initial stable public release.

2

Chapter 1. Introduction

1.4.2. Version 1.0.1 (2002-03-15)

• Fixed completely broken global vacation handling.

• Added test case for vacation handling to test suite.

1.4.3. Version 1.1 (2002-05-27)

• Added some reports to the example file, so users actually get a result of the TaskJuggler run.

• Support for later completion of task and resources added. By writing ’supplement task <ID> { ... }’ an
already defined task can be extended. So it’s easier now to create a file which contains the vacations
for all resources separate from the resource definition itself.

• Extended expression parser to work on string type values as well.

• logicalexpression for hidetask, rolluptask etc. can now contain functions as well. Currently there is
support for ’istask’, ’isresource’, ’isaccount’, ’issubtaskof’, ’contains’, ’ismilestone’.

• Moved the docs directory from TaskJuggler subdir to topdir.

• Added feature list and change-log to the documentation.

• property_reference is now sorted in alphabetical order.

• Added lots of missing attributes to htmlaccountreport .

• Added missing export report to documentation. Export reports can now contain the scheduled tasks
as well as the resource allocations.

• New keywords planbooking and actualbooking to enter fixed bookings of resources in the
resource declaration.

• Added new example project to illustrate the use of export in big projects that are split into sub projects.

• HTML comments in HTML report files are now using correct syntax.

• Partial fix for correct time zone handling.

• Support for STDIN reading and STDOUT writing added. This can be used when calling TaskJuggler
from CGI scripts.

1.4.4. Version 1.2 (2002-06-17)

• Fixed sorting by ID for all HTML reports.

• Fixed bug in vacation handling. Vacations that started before the project were silently ignored.

3

Chapter 1. Introduction

• Added support for taskattributes to export report.

• XML Output changes: Basically the XML output is more simple to parse, some values were added and
corrected.

• Added a first simple TaskJuggler XML-output viewer for KDE. See ktjview/README for
installation. Configure with KDE support enabled.

• Disabled ical support by introducing the HAVE_ICAL switch in the code. The switch is not yet
configure supported, but building with --with-kde-support should work now without failing on missing
libical.

• Support for URLs in HTML reports added.

• Legacy HTML elements have been removed from HTML reports. TaskJuggler now creates pure
HTML 4.0 code.

• Added support for insertion of raw HTML code into reports. This can be achieved with rawhead and
rawtail .

• Added support for user defined style sheets in HTML reports by using the rawstylesheet attribute.

• Strings can now be enclosed in either single or double quotes. A single quoted string may contain
double quotes and vice versa.

• Working hours can now be declared on project level. This also determines if a day is considered a
working day or not.

• With startbuffer and endbuffer you can now specify that there might be some air left in a certain task.

• Remo’s Gantt chart generators have been included in the Contrib directory.

1.4.5. Version 1.3 (2002-07-30)

• This release features some bigger cleanup changes. Some of them do break compatibility with older
version of taskjuggler. While we try very hard to avoid such situations, we do prefer to have a
consistent and logical language. Since the TaskJuggler user base is still comparatively small, we
decided to break compatibility now rather than later. The changes are fairly minor, so they won’t affect
many users. Please see further down for more details.

• Added Perl/Tk tool to view Gantt charts and other project information.

• Added PERT-chart generator from Philippe Midol-Monnet.

• Added support for shifts in shift and task allocate shift.

• Fixed vim syntax highlighting. Some keywords were missing.

• Export report had syntax bug when milestones were present. Fixed.

• Fixed handling of week, month and year duration specifications.

• now and timingresolution are no longer properties. They are now optional attributes of project. They
currently still work as properties as well but a warning is issued and they will be removed in the next
major release.

4

Chapter 1. Introduction

• dailyworkinghours and yearlyworkingdays have been implemented to allow the user for better
control over the conversion from working days to working hours.

• Added support for a select function for alternative resource allocations.

• All load values in HTML reports can now be scaled by specifying a loadunit.

• Improved readability of scheduler error messages.

• Added new example project to the Examples directory to illustrate how to create shift schedules with
TaskJuggler.

• Fixed scheduler for working hours around midnight. This bug affected shifts as well as general
working hours.

• Extended timezone support. TaskJuggler will now operate properly when TZ environment variable is
set.

1.4.6. Version 1.4 (2002-12-18)

• Only export references to tasks which are exported in the same report.

• Allow supplements of tasks within task definitions.

• Converted documentation to DocBook. We now have a much nicer and more structured manual. A
printable version is available as well now.

• Fixed HTML code for bookedlight cells. Those were rendered without background on some browsers.

• Added support for multi-level sorting in reports. sorttasks and sortresources now take multiple criteria.

• Several bugs in the sorting direction code have been fixed. startup, startdown, endup and
enddown have been replaced by planstartup, planstartdown, planendup and planenddown.

• The optional attribute taskprefix has been added to include. This allows other projects to be added at
arbitrary points in the task tree as sub projects.

• Include statements within tasks are no longer supported. They lead to ambiguous interpretation of
certain attributes.

• The optional attribute taskroot has been added to export. This allows to export sub tasks of a tasks to
be exported as root-level tasks.

• The project file reader has been made fully Unicode aware. It is now possible to use non-ASCII
characters in text strings and comments.

• Two new functions have been added for use in logical expressions. isplanallocated and
isactualallocated can be used to show only resources that have been allocated to a certain project
in a given time frame.

• Made week of year calculation ISO 8601:1988 and DIN 1355 compliant. This also affects the month
and year correlation in weekly reports. You can use the optional project attributes weekstartssunday
and weekstartsmonday to specify whether you like to start you week on Sunday or Monday.

• Support for a flags columns added to HTML reports.

5

Chapter 1. Introduction

• Sub tasks do now inherit the dependencies of their container tasks. Specifying dependencies after sub
tasks is now illegal since they would be only used for checking, but not for scheduling.

• The logic checker for task attributes has been completely rewritten. Since it probably catches some
more errors, you might have to fix your project now. Such cases would have resulted in wrong results
anyhow. Lots of test cases have been added to the test suite to validate the checker.

• The error reporting has been drastically improved. The messages should be more precise now and
errors that are triggered by other errors should be not so prominent anymore.

• A new report type has been added. htmlweeklycalendar can be used to generate weekly calendars.

• The format of time specifications in HTML reports is now configurable via timeformat and
shorttimeformat

• The keyword xmltaskreport is now deprecated. It has been replaced by xmlreport . The rest of
the syntax remains identical.

• The tool xml2gantt.pl has been renamed to tjx2gantt and moved from the Contrib
directory to the main directory. The tool xml2png has been removed.

• Included new version 0.2.2 of TJ-Pert from Philippe.

• The load numbers on the bars of the HTML task and resource reports can now be turned on and off
using the barlabels attribute.

• The HTML reports feature now 3 kind of index numbers. The sequence number reflects the order of
declaration in the project files. The index is a logical order based on the hierarchy and other attributes.
The number is the index in the generated list. What used to be the no column is now the index
column.

• The sequence of properties in the project file can now be used as sorting criteria as well.

1.4.7. Version 1.4.1 (2003-02-24)

• Another redo of the loop detector. Now checking tasks not only forward, but also backwards.
Insufficiently specified task boundaries are no longer detected, since they are flagged with missing
start/end messages after the scheduler run.

• The dependency loop detector can now be skipped with the --nodepcheck command line option.

• The dependency loop detector runs now significantly faster for larger projects.

• Broken HTML table when schedule was used with showactual fixed.

• HTML reports can now show a column with the completion degree and the completion status. The
rows can also be sorted by these new columns.

• The HTML and XML reports are now UTF8 encoded. This should eliminate problems with languages
that require non-latin1 character sets.

• Currency values in HTML reports are now always right aligned.

6

Chapter 1. Introduction

• A bug in the handling of nested Resources and Shifts has been found and fixed. The bug lead to wrong
load values for all nested resources. The bug was introduced between versions 1.2 and 1.3.

• If some container tasks could not be scheduled due to problems with a sub task no error message was
generated. This has been fixed now.

• Fixed scheduling of container tasks, so that container tasks with only milestones get properly
scheduled.

• Only export min/max start/end times when they were explicitly specified and do no longer inherit
project start/end times for this purpose.

• htmlaccountreport now supports quarterly and yearly calendar columns.

• Fixed XML reports so that milestone end dates are same as start dates.

1.4.8. Version 1.4.2 (2003-03-10)

• Indentation for tree structure in HTML reports is now done with cell margins. This should no longer
look bad if the label gets wrapped by the browser.

• HTML tables now use explicit head and body sections. This should repeat the table header when
printing HTML reports from some browsers.

• Fixed segfault in XML report generation. Only plan values are now exported in XML report.

• Task scheduling is also set when a fixed start or end date is specified.

• Better error reporting for syntax errors in macros. The call stack with full arguments is included in the
error message now.

• The cost column in HTML task or resource reports now only contains cost. Support for a revenue and
profit column has been added.

• Abbreviated month name are now encoded properly in non-Latin1 languages as well.

• Milestones in HTML calendars are now visible in text browsers and printouts as well.

• New attribute reference added to task.

1.4.9. Version 1.9.0-unstable (2003-06-25)

• A new HTML report type for status report has been added. See htmlstatusreport for details.

• HTML reports are now a lot more flexible. New CSS elements have being used and the table elements
are customizable now. See optional column attributes for details.

• Support for user-defined attributes has been added.

• Resource allocations can now be made mandatory.

7

Chapter 1. Introduction

• The format of numbers and currency values can now be specified with numberformat and
currencyformat. The old keyword currencydigits has been deprecated.

• All reports have now support for daily, weekly, monthly, quarterly and yearly calendars. Task lines
now contain Gantt-chart like bars.

• HTML reports got the additional columns hierarchno and hierarchindex.

• Serveral new query functions and operators for logical expressions have been added.

• Scenario specific task attributes can now be prefixed with the scenario ID followed by a colon. The
attributes starting with ’plan’ or ’actual’ have been deprecated.

• Fixed the URLs for task and resource names in HTML reports.

• Cost, revenue and profit values as well as effort values are now indented in tree sorting mode for all
HTML reports.

• Length and duration tasks with resource allocations are no longer trimmed to the first and last resource
allocation.

• Fixed rounding error in effort calculation that led to the allocation of an extra time slot in some cases.

• Fixed wrong scheduling of tasks that had a length or duration specified as hours or minutes.

• ’length’ based task now use the global working hours and global vacation settings as a criteria of what
is a working day. The tasks now always end during working hours and not at midnight.

• isplanallocated and isactualallocated had broken time interval handling. This is fixed now.

• workinghours and currency are no longer global properties. They are now optional attributes of the
project property.

• The scenario name is no longer displayed by default if more than one scenario is included in a report.
A column scenario must be explicitly added if the scenario name should be reported for each line.
The attributes ’showactual’ and ’hideplan’ have been deprecated. The scenarios attribute now controls
which scenarios should be shown.

• Container tasks in export reports no longer have fixed start and end date if they have their sub tasks
exported as well.

• Resource allocations are now inherited from parent tasks.

1.4.10. Version 1.9.1-unstable (2003-07-29)

• A new class of reports has been added. CSV reports (Comma separated values) are usefull to import
TaskJuggler reports into other productivity applications such as spreadsheets. The new reports are
called csvtaskreport, csvresourcereport and csvaccountreport.

• HTML Calendars have now a navigation aid. Moving a mouse over a cell will show the date and
task/resource id in the browser status bar.

• Background cells in HTML calendars are now merged. This makes taskjuggler report generation faster
and reduces the size of HTML report files.

8

Chapter 1. Introduction

• The export report can now be a main project file as well.

• A new keyword for taskattributes of export reports has been introduced. The keyword all causes all
supported task attributes to be exported.

• Various speed improvements.

• The broken milestone symbol in HTML calendars has been fixed.

• HTML reports now have a black grid to separate the cells. This enhances readability both on the
screen and on printouts.

• The functions for Logical Expressions are now using capital letters to improve their readability. The
all lowercase versions are still supported, but the recommended versions are now the ones with
intermixed uppercase letters. isTaskOfProject was added as new query function.

• The maximum allocation of a resource for a task is no longer limited by default. maxeffort now
defaults to 0 (unlimited) instead of 1.0 (8 hours per day). To have the same behaviour as in
TaskJuggler 1.x version you need to specify maxeffort 1.0 before any resource definition. This
change was made since many users were confused when after increasing the daily working hours
resources were still only allocated 8 hours per day.

1.4.11. Version 1.9.2-unstable (2003-09-05)

• Support for new XML format has been added. The old format is still supported. TJ can read both old
and new format XML files but will use the new XML format for output.

• The property projectids has been added. It is used in export reports to declare all the project IDs that
are used in the report.

• Resource booking periods can now overlap with off-duty hours, vacation or other task assignments.
This is controlled by the sloppy attribute.

• Effort based tasks now correctly recognize if the effort was partially specified with booking attributes.
The effort is no longer allocated ontop of the bookings.

• You can now reference environment variables by writing $(VAR) as a means to pass runtime values to
taskjuggler.

• Several inconsistencies and off-by-one errors with respect to task end times have been fixed.

• TaskJuggler can now create ’make’ compatible dependency information.

• The number of errors after which TaskJuggler stops processing is now configurable via a command
line option.

9

Chapter 1. Introduction

1.4.12. Version 2.0.0 (2003-11-24)

• Fixed completion coloring in HTML reports.

• Fixed segfault in certain cases of inherited resource allocations.

• Macro names in macro calls can now be prefixed by a questionmark to surpress warnings if the macro
is undefined.

• Microsoft and MacOS text files are now read in correctly.

• Report cells can be left empty and URLs can be ommitted controlled by a logical expression. This is
controlled by hidecelltext and hidecellurl.

• New functions isATask, isAResource and isAnAccount can now be used in logical expressions.

• XML version 2 files are now compressed with zlib.

1.4.13. Version 2.0.1 (2004-03-08)

• Fixed handling of resource allocations with multiple shift intervals.

• Fixed double-quoting of HTML special characters such as umlauts.

• Added query function isDutyOf() to select tasks where a certain resource has been assigned to.

• The contents of XML reports can now be limited with the usual filter mechanisms. Support for
hideresource, hidetask, rollupresource and rolluptask has been added. Also scenario filtering was
implemented for XML reports.

• Weekly, monthly, quarterly and yearly HTML reports now have resource vacations as well. If the
vacation fills the complete report cell term, the cell has a yellow background.

• Fixes for building TaskJuggler on FreeBSD added.

• maxeffort and load have been replaced by the far more flexible concept of limits.

1.4.14. Version 2.1.0 (2005-03-07)

• TaskJuggler now has a nice face. Beside the commandlime application taskjuggler, you can now
use TaskJuggler or ktjview2 as a graphical user interface to enter and schedule your projects.

• New optimizer that achieves much better resource selection resulting in shorter overall project times.

• Passive resources like meeting rooms, machines and the like, that do not contribute to the effort of a
task can now be modelled by setting their efficiency to 0.0.

10

Chapter 1. Introduction

• Added critical path analyser. Each task is rated and the rating can be listed in the HTML and CSV
report.

• New task state added. When a task is not finished by the planned end date, it now marked as late.

• Task dependency specifications (depends or precedes can now have optional gap specification. It is
possible to specify the gap in calendar time (gapduration) or working time (gaplength).

• The speed of report generation has been significantly improved. This is especially true for reports that
make use of filter functions.

• Added status and statusNote to XML reports.

• Added some missing properties to the documentation. Mainly the sorting criterias were missing.

• Fixed a memory leak during XML report generation.

• Fixed scheduling of nested task that had an external dependency and an inherited start/end date.

• Limits of resource allocations with multiple alternatives are now correctly handled. The limits were
applied to each individual resource instead of to the whole allocation.

• The task priority is now always properly respected. Due to a bug in the scheduling algorithm a heavy
mixture of ALAP and ASAP tasks with various levels of priorities, ALAP tasks were treated more
favorable then they should have been treated. This fix can drastically reduce the scheduling speed
when you have a heavy mixture of ALAP and ASAP tasks with variing priorities.

• The error checking and reporting of logical expressions has been drastically improved.

• The reports are now generated relative to their definition file and no longer relative to the current
working directory where you started the program.

1.4.15. Version 2.1.1 (2005-08-04)

• The code for the generation of iCal reports has been revived again. iCal is a standard format to
exchange data with calendar applications such as KOrganizer.

• The contents of export reports can now be customized with the properties attribute. The report interval
is customizable as well now.

• Add new chapter to manual that describes how to use TaskJuggler as a project tracking tool.

• The HTML version of the manual has now a new look and many more syntax examples have been
added to the property reference.

• The TaskJuggler editor now supports printing of project files.

• Fixed build with GCC 4.

• Fixed build problems in the doc directory on Debian Unstable and FC3.

• We are now using docbook-utils instead of docbook-toys to generate the documentation.

• Filtering resources and tasks in the TaskJuggler GUI reports now always works properly.

• Fixed generation of reports with absolute file names.

11

Chapter 1. Introduction

• Make sure that all dates specified in project files lie within the Unix time space. For technical reasons
we need to limit this to 1971-01-01 - 2035-01-01.

• Fixed some crashes related to out of project time specifications.

• Warnings about pre 2.0 deprecated syntax elements have been converted to errors.

• Fixed sorting of task reports when not using the default scenario as first scenario.

• Fixed projection scheduling mode. Tasks with bookings equal or larger than the effort lead to
scheduling errors.

1.5. How to Contribute

1.5.1. Why contribute?

TaskJuggler is an Open Source Project. It was developed by volunteers mostly in their spare time. Made
available under the GNU General Public license and similar licenses, TaskJuggler can be shared and used
free of charge by anybody who respects the license conditions. Does that mean you can use it without
worrying about anything? Clearly not! Though users have no legal obligation to contribute, you should
feel a moral obligation to support Open Source in whatever way you can. This can range from helping
out other Open Source users to actively contributing to the TaskJuggler Project. The following section
describes, how you can contribute to any of the components that are part of the TaskJuggler software
releases.

1.5.2. Preparing a contribution

To get started you need to download the most current development snapshot from the TaskJuggler
Download Site (http://www.taskjuggler.org/download.php). The development snapshot is updated once a
day to provide access to the continous development. It is important that you use a very recent snapshot as
the developers might have made changes in the same files as you. This increases the chance for change
collisions which can ultimately lead to the rejection of your contribution.

Unpack the tarball as described in the installation section. Then rename the taskjuggler directory to
something like taskjuggler-yourname. Then unpack the tarball again in the same place as before.
You should now have a directory that contains two identical directory trees, each with a slightly different
name of the top-level directoy of each tree.

Next you need to find the files where you want to make your modifications. Please make your changes
only in the taskjuggler-yourname directory. The other directory must be left unmodified. We need it
later on to create a file that just contains your changes. Sometimes files will be generated from other files.
Do not change those generated files. Your changes will be overwritten the next time you call the make

12

Chapter 1. Introduction

utility. To identify those files, some familiarity with make and other Linux tools are helpful. Whenever
there is a file with the same base name and the extension .in in the same directory, then the file is
generated from the .in-file. You need to modify the .in-file, not the one with just the base name.
Another indicator is the fact that the file is not part of the tarball. With few exceptions that can be
identified by the .in-file rule above, the tarball does not contain any generated files.

1.5.3. Creating a Patch

When you are done with your changes, it’s a good idea to test them. Type

make

in the taskjuggler-yourname directory. In case there are no errors, you can inspect the result. In case
everything builds fine, you can remove all generated files again by typing

make distclean

Now you can generate a file that just contains your modifications by typing

diff -ru taskjuggler-svn taskjuggker-yourname > taskjuggler-yourname.diff

Inspect the generated file taskjuggler-yourname.diff and make sure it only contains diffs for files
that you have changed and the changes are the way you want them to be. In case there are generated files
included as well, please remove those files and regenerate the diff.

As you can see, the diff utility performs a line-by-line comparisons of the files. Therefor make sure, you
only make changes that have an impact on the generated files. Do you change indentation or line
wrapping of paragraphs. These kind of changes increase the size of diff files and make it much harder to
evaluate the patches. When making changes to the program code, please use our coding style. In case
your contribution is large enough to justify a copyright claim, please indicate this in the patch. For
modifications to existing files, we assume that your contribution falls under the same license as the
modified file. All new files need to contain a license declaration.

1.5.4. Contributing Translations

Another possible area of contribution are translation of TaskJuggler into languages other than US
english. Our development process is in pricinple prepared for translations, but the first translation will
definitely be a bit bumpy to include. TaskJuggler has several hunderd messages and more than hundred
pages of documentation. Any translation is a significant effort and an ongoing commitment. TaskJuggler
is still actively developed and this requires the translations to be updated as well. Please understand that
we do not want to ship partial or outdated translations to our users.

13

Chapter 1. Introduction

1.5.5. Some final words to Contributors

We do welcome all contributions but please understand that we reseve the right to reject any contribution
that does not follow the above guidelines or otherwise conflicts with the goals of the TaskJuggler team. It
is a good idea to contact the team prior to making any larger efforts.

14

Chapter 2. Installation

2.1. Obtaining TaskJuggler

TaskJuggler may be obtained from the following web site:

http://www.taskjuggler.org (http://www.taskjuggler.org)

2.2. The TaskJuggler Components

TaskJuggler consists of several modular components that you might need or not. TaskJuggler also uses
some additional tools. We have avoided to re-invent the wheel again wherever possible, at the same time
we tried to keep the dependency list reasonably small. Nevertheless can it be challenging to the
unexperienced user to build and install TaskJuggler from source code. Most users are probably better
served by using binary packages from their distributor. Almost every mainstream distribution has
TaskJuggler included in recent version of their product. If not, you might like to contact them to inform
them that they are missing an essential package.

This version of TaskJuggler was built and tested on SuSE Linux 9.1, 9.2 and 9.3 on various hardware
platforms.

2.2.1. The Graphical User Interfaces

With version 2.1 came a new graphical front-end. It’s an integrated Project management environment. At
this point we have two different programs, but you will probably only need one of them as they are very
similar in functionality.

The first option is called TaskJuggler. Don’t confuse this with taskjuggler which is the
commandline version. When you want to start TaskJuggler from a shell, you need to type it with a capital
T and J.

The second option is called ktjview2.

We recommend to try them both and let us know (http://www.taskjuggler.org/FUDforum2/) which one
you like better.

The graphical front-ends make use of the libraries of the K Desktop Environment (www.kde.org). We
recommend to use at least version 3.4. Earlier version will probably work as well, but we have not tested

15

Chapter 2. Installation

them.

2.2.2. The command line tool taskjuggler

To build and run TaskJuggler, you need:

• Qt — The Qt C++ class library (ftp://ftp.trolltech.com/qt/source) version 3.3 or higher

• GNU Compiler Collection — We are currently using GCC 3.2 to develop TaskJuggler. Since we try to
write the code platform independent and ANSI standard compliant it should work with other
compilers as well.

These requirements are enough to build and use the command line program that translates project
descriptions into HTML or XML reports. If you want to built this documentation or use the tools to
process the XML files you need to take care of additional dependencies. If any of the following
dependencies are not matched, the configure script will issue a warning but will not fail.

2.2.3. The TaskJuggler Documentation

• DocBook4 — The DocBook (http://www.oasis-open.org/docbook/) system with additional stylesheets
and utilities.

• docbook-utils— The jade wrapper scripts (ftp://sources.redhat.com/pub/docbook-tools) from Eric
Bischoff.

• OpenJade — The OpenJade (http://openjade.sourceforge.net/) system.

• JadeTeX — If you want to build the Postscript version of the documentation you need the JadeTeX
(ftp://ftp.dante.de/tex-archive/macros/jadetex) macro package for teTeX (http://www.tug.org/teTeX).

• XSLT Processor — like xsltproc from the libxslt (http://xmlsoft.org/XSLT/) package.

• Meinproc — the XSLT processor for the KDE (http://www.kde.org) Helpcenter. You only need
meinproc in case you want to build the GUI. meinproc is part of any KDE distribution.

• dvips — This is usually part of your TeX system like te_latex (http://www.tug.org/teTeX).

16

Chapter 2. Installation

2.2.4. tjx2gantt - Transforms XML files to Postscript Gantt
charts

tjx2gantt is installed by default and generates Postscript Gantt charts from the XML files that
TaskJuggler generates. tjx2gantt is written in Perl.

tjx2gantt only reads in the XML format version 1 of taskjuggler. Please specify the format version when
requesting XML reports.

This program is no longer maintained and will be dropped at some point in the future. If you are
interested to take it over, please contact us (www.taskjuggler.org/FUDforum2).

• Perl 5.6 — The Perl (http://www.perl.com/pub/a/language/info/software.html#stable) interpreter and
the following Perl modules.

• XML::Parser — Available from CPAN
(http://www.cpan.org/modules/by-module/XML/XML-Parser-2.31.tar.gz)

• PostScript::Simple — Available from CPAN
(http://www.cpan.org/modules/by-module/PostScript/PostScript-Simple-0.04.tar.gz)

• Date::Calc — Available from CPAN
(http://www.cpan.org/modules/by-module/Date/Date-Calc-5.3.tar.gz)

• Class::MethodMaker — Available from CPAN
(http://www.cpan.org/modules/by-module/Class/Class-MethodMaker-1.06.tar.gz)

• Data::Dumper — Available from CPAN
(http://www.cpan.org/modules/by-module/Data/Data-Dumper-2.101.tar.gz). This module is only
needed for debugging.

• Poster — The Poster (http://www.geocities.com/SiliconValley/5682/poster.html) utility cuts big
Postscript pictures into printable chunks. It’s handy but optional as well.

2.2.5. Contributed Stuff

Serveral people have contributed useful tools for TaskJuggler users. These tools can be found in the
Contrib directory of the source code package. Please refer to the included README files for installation
information.

17

Chapter 2. Installation

2.3. Compilation and Installation

Before compiling TaskJuggler you need to set the QTDIR environment variable to the base directory of
your Qt version. This is normally /usr/lib/qt3.

To compile and install TaskJuggler on your system, type the following in the base directory of the
TaskJuggler distribution:

% ./configure
% make
% make install

Since TaskJuggler uses autoconf, you should have no trouble compiling it. TaskJugger has some weak
or non-mandatory dependencies. If any of there are not satisfied, a warning is issued. In case a mandatory
dependency is not found, an error is displayed and the configuration program stops. If you have
problems, please report them to the TaskJuggler user forum at http://www.taskjuggler.org/FUDforum2
(http://www.taskjuggler.org/FUDforum2) in English. Maybe someone there can help you out.

In case you want to build TaskJuggler without the graphical front-ends, you can disable them during
them configuration process:

% ./configure --with-kde-support=no --prefix=/usr/local
% make
% make install

18

Chapter 3. Usage

3.1. Basics

TaskJuggler uses one or more text files to describe a project. The main project should be placed in a file
with the .tjp extension. This main project may contain several sub-projects. Such sub-projects should
be placed in files with the .tji extension. These sub-projects are included in the main project during
compile time.

When TaskJuggler is used with other tools the project description or the reports may also be in XML
format. The recommended extension for such files is .tjx.

3.2. General Usage

To use the graphical front-end simply start it from the menu. Depeding on your Linux Distribution you
will find it under Office/Project Management or a similar entry. To start it from a shell type

% TaskJuggler

or

% ktjview2

The commandline version of TaskJuggler works like a compiler. You provide the source files, it
computes the contents and creates the output files.

Let’s say you have a project file called AcSo.tjp. It contains the tasks of your project and their
dependencies. To schedule the project and create report files you have to ask TaskJuggler to process it.

% taskjuggler AcSo.tjp

19

Chapter 3. Usage

TaskJuggler will try to schedule all tasks with the specified conditions and generate the reports that were
requested with the htmltaskreport, htmlresourcereport or other report properties in the input file.

3.3. The Command Line Options

--help Print all command line options with a short description.
--version Print the version and copyright info.
-v Same as ’--version’.
-s Stop TaskJuggler run after syntax check. This option is for testing and debugging purposes only.
-M Output fragment of a Makefile that lists the dependencies of the passed TaskJuggler files.
--makefile <file> Similar to ’-M’ but write the dependency information into the specified file.
--maxerrors N Specifies the number of errors after which TaskJuggler stops checking the input files. If N is 0 all errors are displayed.
--nodepcheck Do not check for dependency loops. The loop detector uses an algorithm that needs exponentially more time the bigger the dependency network gets. So for large projects it can be desireable to skip the dependency loop detection. This does not affect the task scheduling but can lead to error messages that are difficult to associate with a flawed dependency specification.
--debug N Print debug output, N must be between 0 and 4, the higher N the more output is printed. This option is for testing and debugging purposes only.
--dbmode N Limit debug output to certain modules of the code. N is a bit mask. Each set bit actives output of a certain module. Currently the following modules are supported: Project File Reader (1), Project Scheduler (2), Task Scheduler (4), Resource Scheduler (8), Expression Tree Evaluator (16). This option is for testing and debugging purposes only.
--updatedb Update the Kotrus database with the new resource usage information.

Calling TaskJuggler with . as input filename will cause reading from stdin. To redirect output to stdout
you can specify -- as filename for reports. This feature can for example be used to generate dynamic
HTML pages from CGI scripts.

3.4. Reporting Bugs and Sending Feedback

All official releases of TaskJuggler are meant to be stable releases unless explicitly noted differently. But
our test suite is still very small and some features cannot be tested automatically very well. So it’s very
likely that your current version of TaskJuggler contains some bugs. If you find a bug please follow this
procedure:

• Read this manual to make sure that it is actually a bug and not a feature.

• Check the TaskJuggler web page (http://www.taskjuggler.org). Possibly the bug was already found and
a patch or workaround exists.

• Try to create a test project that is as small as possible but still reproduces the bug.

• Send the test project and a detailed description of the problem to the developer forum at
http://www.taskjuggler.org/FUDforum2.

20

Chapter 4. Tutorial: Your First Project

We have mentioned already that TaskJuggler uses plain text files that describe the project to schedule it.
As you will see now, the syntax of the file is easy to understand and very intuitive. This chapter will walk
you step by step through your first project. You create the project plan for a made-up accounting software
project. Refer to Chapter 8 for a full listing of the example. This project demonstrates some of the basic
features of TaskJuggler for more advanced features please refer to Chapter 6.

4.1. Starting the project

To start a TaskJuggler project file you need to use the project property.

project acso "Accounting Software" "1.0" 2002-01-16 2002-04-26 {
now 2002-03-04
timeformat "%Y-%m-%d"
currency "EUR"
scenario plan "Plan" {
scenario delayed "Delayed"

}
}

It tells TaskJuggler the default project ID, a short name for your project, a version number and a start and
end date. The start and end dates don’t need to be exact, but must enclose all tasks. It specifies the time
interval the TaskJuggler scheduler will use to fit the tasks in. So, make it big enough, that all your tasks
fit within. But don’t make it too big, since this will result in longer scheduling times and higher memory
consumption.

All TaskJuggler properties have a certain number of fixed attributes and a set of optional attributes.
Optional attributes are always enclosed in curly braces. In this example we use the optional attributes
now to set the current day for the scheduler to another value than to the moment your invoke
TaskJuggler. We pick a day during the above specified project period. So we always get the same results
of a TaskJuggler run, no matter when we process our first project. The currency attribute specifies the
unit of currency values.

Since each culture has it’s own way of specifying dates, the format is configurable. Use the timeformat
attribute to specify the default format. This is the format used for reports. It’s not the format that you use
in TaskJuggler project files. This format is fixed and must be
Year-Month-Day-Hours:Minutes:Seconds-Timezone. All values after day are optional.

21

Chapter 4. Tutorial: Your First Project

In this tutorial we would like to compare two scenarios of the project. The first scenario is the one that
we have planned. The second scenario is how it really happended. The two scenarios have the same task
structure, but the start and end dates of the task may vary. In reality we assume that the project got
delayed, so we call the second scenario "Delayed". The scenario property is used to specify the
scenarios. The delayed scenario is nested into the plan scenario. This tells TaskJuggler to use all values
from the plan scenario also for the delayed scenario unless the delay scenario has it’s own values. We’ll
see further down, how to specify values for a scenario.

4.2. Global Attributes

Besides finding suitable start and end dates of our project, we also like to do a simple profit and loss
analysis. So we have to specify the default daily costs of an employee. This can be changed for certain
employees later, but it illustrates an important concept of TaskJuggler - inheritance of attributes. In order
to reduce the size of the TaskJuggler project file to a still readable minimum, properties inherit many
optional attributes from their enclosing scope. We’ll see further down, what this actually means. Here we
are at top-level scope, so this is the default for all following properties.

rate 310.0

The rate attribute can be used to specify the daily costs of resources.

Macros are another TaskJuggler feature to keep project files small. Macros are text patterns that can be
defined once and inserted many times further down the project. A macro always has a name and the text
pattern is enclosed by square brackets.

macro allocate_developers [
allocate dev1
allocate dev2 { limits { dailymax 4h } }
allocate dev3

]

To use the macro you simply have to write ${allocate_developers} and TaskJuggler will replace
the term ${allocate_developers} with the pattern. We will use the macro further down in the
example and then explain the meaning of the pattern.

22

Chapter 4. Tutorial: Your First Project

4.3. Declaring Resources

A TaskJuggler feature that you will probably make heavy use of is flags . Once declared you can attach
them to many properties. When you generate reports of the TaskJuggler results, you can use the flags to
filter out information and limit the report to exactly those details that you want to have included.

flags team

resource dev "Developers" {
resource dev1 "Paul Smith" { rate 330.0 }
resource dev2 "Sebastien Bono"
resource dev3 "Klaus Mueller" { vacation 2002-02-01 - 2002-02-05 }

flags team
}
resource misc "The Others" {
resource test "Peter Murphy" { limits { dailymax 6.4h } rate 240.0 }
resource doc "Dim Sung" { rate 280.0 }

flags team
}

This snippet of the example shows the resource property. Resources always have an ID and a Name. IDs
may only consist of ASCII characters, numbers and the underline character. All global TaskJuggler
properties have IDs. They need to be unique within their property class. The ID is needed so that we can
reference the property again later without having the need to write the potentially much longer name.
Names are strings and as such enclosed in double quotes. Strings may contain any character, even
non-ASCII characters. As you can see, resource properties can be nested. dev is a virtual resource, a
team, that consists of three other resources.

dev1, alias Paul Smith costs more than the normal employee. So the declaration of dev1 overwrites the
inherited default rate with a new value of 330.0. The default value has been inherited from the enclosing
scope, resource dev. Which in turn has inherited it from the global scope.

The declaration of the resource Klaus Müller uses another optional attribute. With vacation you can
specify a certain time interval where the resource is not available.

Here you need to understand how TaskJuggler handles time intervals. Internally TaskJuggler uses the
number of seconds after January 1st, 1970 to store any date. So all dates are actually stored with an
accuracy of 1 second. 2002-02-01 specifies midnight February 1st, 2002. Again following the
TaskJuggler concept of needing as little information as needed and extending the rest with sensible
defaults, TaskJuggler adds the time 0:00:00 if nothing else has been specified. So the vacation ends on
midnight February 5th, 2002. Well, almost. Every time you specify a time interval, the end date is not

23

Chapter 4. Tutorial: Your First Project

included in the interval. But the second before the date that you have specified is. So Klaus Müllers
vacation ends 23:59:59 on February 4th, 2002.

Peter Murphy only works 6.4 hours a day. So we use the limits attribute to limit his daily working hours.
We could also define exact working hours using the shift property, but we ignore this for now.

Note that we have attached the flag team after the declaration of the sub-resources to the team
resources. This way, they flags don’t get handed down to the sub-resources. If we would have declared
the flags before the sub-resources, then they would have the flags attached as well.

4.4. Declaring Accounts

The use of our resources will create costs. For a profit and loss analysis, we need to balance the costs
against the customer payments. In order to not get lost with all the various amounts, we declare 3
accounts to credit the amounts to. We create one account for the development costs, one for the
documentation costs and one for the customer payments.

account dev "Development" cost
account doc "Dokumentation" cost
account rev "Payments" revenue

The account property has 3 fixed attributes, an ID, a name and a type. The type can either be cost or
revenue . For the analysis TaskJuggler subtracts the total amount of all cost accounts from the total

amount from all revenue accounts.

Accounts can also be nested. Nested accounts may not have a type specified. They inherit the type of the
top-level account.

4.5. Specifying the Tasks

Let’s focus on the real work now. The project should solve a problem - the creation of an accounting
software. Since the job is quite complicated we break it down into several sub tasks. We need to do a
specification, develop the software, test the software and write a manual. In TaskJuggler syntax this
would look like that:

task AcSo "Accounting Software" {
task spec "Specification"
task software "Software Development"

24

Chapter 4. Tutorial: Your First Project

task test "Software testing"
task deliveries "Milestones"

}

Similar to resources, tasks are declared by using the task keyword followed by an ID and a name string.
All TaskJuggler properties have their own namespaces. This means, that it is quite OK to have a resource
and a task with the same ID. Tasks may have optional attributes which can be tasks again, so tasks can be
nested. In constrast to all other TaskJuggler properties, task IDs inherit the ID of the enclosing task as a
prefix to the ID. The full ID of the spec task is AcSo.spec.

To track important milestones of the project, we also added a task called Milestones. This task, like most
of the other task will get some sub tasks later on. We consider the specification task simple enough that
we don’t have to break it into further sub tasks. So let’s add some more details to it.

task spec "Specification" {
effort 20d
${allocate_developers}
depends !deliveries.start

}

The effort to complete the task is specified with 20 man days. Alternatively we could have used the
length attribute or the duration attribute. length specifies the duration of the task in working days while
duration specifies the duration in calendar days. Contrary to effort these two don’t have to have a
specification of the involved resources. Since effort specifies the duration in man days, we need to say
who should be allocated to the task. The task won’t finish before the resources could be allocated long
enough to reach the specified effort. Tasks with length or duration criteria and allocated resources,
will last exactly as long as requested. Resources will be allocated only if available.

Here we use the above mentioned macro allocate_developers. The expression

${allocate_developers}

is simply expanded to

allocate dev1
allocate dev2 { limits { dailymax 4h } }
allocate dev3

25

Chapter 4. Tutorial: Your First Project

If you need to allocate the same bunch of people to several task, the macro saves you some writing. You
could have written the allocate attributes directly instead of using the macro. Since the allocation of
multiple resources to a task is a very common place for macro usage, we found it a good idea to use it in
this example as well.

One more interesting thing to note is the fact that we like the resource dev2 only to work 50% of the day
on this task, so we use the optional attribute limits to specify this.

For TaskJuggler to schedule a task it needs to know either the start and end criteria of a task, or one of
them and a duration specification. The start and end criteria can either be fixed dates or relative dates.
Relative dates are specification of the type "task B starts after task A has finished". Or in other words,
task B depends on task A. In this example the spec task depends on a sub tasks of the deliveries
tasks. We haven’t specified it yet, but it has the local ID start.

To specify the dependency between the two task we use the depends attribute. The attribute must be
followed by one or more task IDs. If more than one ID is specified, each ID has to be separated with a
comma from the previous one. Task IDs can be either absolute IDs or relative IDs. An absolute ID of a
task is the ID of this task prepended by the IDs of all enclosing tasks. The task IDs are separated by a dot
from each other. The absolute ID of the specification task would be AcSo.spec.

Relative IDs always start with one or more exclamation marks. Each exclamation mark moves the scope
to the next enclosing task. So !deliveries.start is expanded to AcSo.deliveries.start since
AcSo is the enclosing task of deliveries. Relative task IDs are a little bit confusing at first, but have a
real advantage over absolute IDs. Sooner or later you want to move tasks around in your project and then
it’s a lot less likely that you have to fix dependency specifications of relative IDs.

The software development task is still too complex to specify it directly. So we split it into sub tasks
again.

task software "Software Development" {
priority 1000
task database "Database coupling"
task gui "Graphical User Interface"
task backend "Back-End Functions"

}

We use the priority attribute to mark the importance of the tasks. 500 is the default priority of top-level
tasks. Setting the priority to 1000 marks the task as most important task, since the possible range is 1 (not
important at all) to 1000 (ultimately important). priority is an attribute that is handed down to sub

26

Chapter 4. Tutorial: Your First Project

tasks if specified before the sub tasks declaration. So all sub tasks of software have a priority of 1000
as well unless they have their own priority definition.

task database "Database coupling" {
effort 20d
depends !!spec
allocate dev1, dev2

}

The work on the database coupling should not start before the specification has been finished. So we use
again the depends attribute to let TaskJuggler know about this. This time we use two exclamation marks
for the relative ID. The first one puts us in the scope of the enclosing software task. The second one is
to get into the AcSo scope that contains the spec tasks. This time we allocate resources directly without
using a macro.

task gui "Graphical User Interface" {
effort 35d
delayed:effort 40d
depends !database, !backend
allocate dev2, dev3

}

TaskJuggler can schedule your project for two different scenarios. We have called the first scenario
"plan" scenario and the second "delayed" scenario. Many of the reports allow you to put the values of
both scenarios side by side to each other, so you can compare the two scenarios. All scenario specific
values that are not explicitly stated for the delayed scenario are taken from the plan scenario. So the user
only has to specify the values that differ in the delayed scenario. The two scenarios must have the same
task structure and the same dependencies. But the start and end dates of tasks as well as the duration may
vary. In the example we have planned the work on the graphical user interface to be 35 man days. It
turned out that we actually needed 40 man days. By prefixing the start effort attribute with delayed: the
effort value for the delayed scenario can be specified.

task backend "Back-End Functions" {
effort 30d
complete 95
depends !database, !!spec
allocate dev1
allocate dev2

}

27

Chapter 4. Tutorial: Your First Project

By default TaskJuggler assumes that all tasks are on schedule. Sometimes you want to generate reports,
that show how much of a task has actually been completed. TaskJuggler uses the current date for this
unless you have specified another date using the now attribute. If a task is ahead of schedule or late that
can be specified using the complete attribute. This specifies how many percent of the task have been
completed up to the current date. In our case the back-end implementation is slightly ahead of schedule
as we will see from the report.

task test "Software testing" {

task alpha "Alpha Test" {
effort 1w
depends !!software
allocate test, dev2

}

task beta "Beta Test" {
effort 4w
depends !alpha
allocate test, dev1

}
}

The software testing task has been split up into an alpha and a beta test task. The interesting thing here is,
that efforts can not only be specified as man days, but also man weeks, man hours, etc. Per default
TaskJuggler assumes a man week is 40 man hours or 5 man days. These values can be changed using the
dailyworkinghours attribute.

Let’s go back to the outermost task again. At the beginning of the example we stated that we want to
credit all development work to one account with ID dev and all documentation work to the account doc.
To achieve this, we use the attribute account to credit all tasks to the dev account.

task AcSo "Accounting Software" {

account dev

task software "Software Development" {

Since we specify the attribute for the top-level task before we declare any sub tasks, this attribute will be
inherited by all sub tasks and their sub tasks and so on. The only exception is the writing of the manual.
We need to change the account for this task again as it is also a sub task of AcSo.

28

Chapter 4. Tutorial: Your First Project

task manual "Manual" {
effort 10w
depends !deliveries.start
allocate doc, dev3
account doc

}

4.6. Specifying Milestones

All task that have been discussed so far, had a certain duration. We did not always specify the duration
explicitly, but we expect them to last for a certain period of time. Sometimes you just want to capture a
certain moment in your project plan. These moments are usually called milestones since they have some
level of importance for the progress of the project.

TaskJuggler has support for milestones as well. They are handled as special types of tasks. By using the
optional attribute milestone for a task, this task is declared a milestone. Milestones have no duration, so
it’s illegal to specify any duration criteria, or a non identical start and end date.

task deliveries "Milestones" {

account rev

task start "Project start" {
milestone
start 2002-01-16
delayed:start 2002-01-20
startcredit 33000.0

}

task prev "Technology Preview" {
milestone
depends !!software.backend
startcredit 13000.0

}

task beta "Beta version" {
milestone
depends !!test.alpha
startcredit 13000.0

}

task done "Ship Product to customer" {
milestone
maxend 2002-04-17
depends !!test.beta, !!manual

29

Chapter 4. Tutorial: Your First Project

startcredit 14000.0
}

}
}

We have put all important milestones of the project as sub tasks of the deliveries task. This way they
show up nicely grouped in the reports. All milestone have either a dependency or a fixed start date. For
the first milestone we have used the attribute start to set a fixed start date. All other tasks have direct or
indirect dependencies on this task. Moving back the start date will slip the whole project. This has
actually happened, so we use the delayed: prefix again to specify the start date for the delayed scenario.

Every milestone is linked to a customer payment. By using the startcredit attribute we can credit the
specified amount to the account associated with this task. Since we have assigned the rev account to the
enclosing task, all milestones will use this account as well.

Did you notice the line in the task done that starts with a hash? This line is commented out. If
TaskJuggler finds a hash it ignores the rest of the line. This way you can include comments in your
project. The maxend attribute specifies that the task should end no later than the specified date. This
information is not used for scheduling but only for checking the schedule afterwards. Since the task will
end later than the specified date, commenting out the line would trigger a warning.

Now the project has been completely specified. Stopping here would result in a valid TaskJuggler file
that could be processed and scheduled. But no reports would be generated to visualize the results.

4.7. Generating Reports of the scheduled Project

TaskJuggler offers a number of report types. Probably the most popular ones are interactive reports and
HTML reports.

4.7.1. Generating Interactive Reports

Interactive reports are only available in the TaskJuggler GUI. The command line version will just ignore
interactive report definitions. To view a task report in the GUI, you have to add the following lines to
your project.

taskreport "Project Overview" {
columns start, end, effort, duration, completed, status, note, cost, revenue
scenario delayed

}

30

Chapter 4. Tutorial: Your First Project

The syntax is very similar to other report types. The only noticable differences are:

• A column with the task name is always included.

• A Gantt chart will always be displayed.

• Interactive reports only support one scenario. By default this is the first scenario, but the user can
select another scenario to be displayed. To view the delayed scenario we use the keyword scenario.

The interactive resource reports have a very similar syntax:

resourcereport "Resource Usage" {
columns effort, freeload, utilization, rate
scenario delayed
hideresource 0

}

4.7.2. Generating HTML Reports

You can advice TaskJuggler to generate one or more HTML pages that contain lists of your tasks,
resources or accounts.

Before we start with the reports, we present you another macro. We like to add a navigation bar to each
HTML page that holds a number of buttons. Each button changes the page to another report. This way
we can create a navigation bar that holds links to all reports. Since we have created a macro, we can add
the navigation bar to all reports without much hassle. The navigation bar is constructed with raw HTML
tags. If you are not familiar with HTML this will look very strange to you. Don’t worry, this is just a cool
feature we would like to demonstrate. You can use TaskJuggler to it’s full extend without having to learn
HTML code.

The HTML code is injected into the reports using the rawhead attribute. This will put the HTML code
close to the top of the HTML page right after the body started. As you can see here, string parameters of
attributes can be enclosed in single quotes as well. This is handy, if the string itself needs to contain
double quotes.

macro navbar [
rawhead

31

Chapter 4. Tutorial: Your First Project

’<p><center>
<table border="2" cellpadding="10">
<tr>
<td class="default" style="font-size:120%" rowspan="2">
Tasks Overview</td>
<td class="default" style="font-size:120%" rowspan="2">
Tasks Details</td>
<td class="default" style="font-size:120%" rowspan="2">
Staff Overview</td>
<td class="default" style="font-size:120%" rowspan="2">
Staff Details</td>
<td class="default" style="font-size:120%" rowspan="2">
Accounting</td>
<td class="default" style="font-size:120%" rowspan="2">
GANTT Chart (Postscript)</td>

</tr>
</table>
</center></p>
’

]

4.7.3. Generating HTML Task Reports

As the first report, we would like to have a general overview of all tasks with their computed start and
end dates. To visualize the dates a bit more, we also include a Gantt chart like bar graph. The property
htmltaskreport defines exactly this, a list of all tasks in a table. The columns are flexible and can be
specified with the column attribute. For this report we like to see the number, the name, the start and end
date, a weekly calendar and the total effort in the table.

htmltaskreport "Tasks-Overview.html" {
${navbar}
columns hierarchindex, name, duration, effort { title "Work"},

start, end, weekly
timeformat "%a %Y-%m-%d"
barlabels empty
headline "Accounting Software Project"
caption "This table presents a management-level overview of the
project. The values are days or man-days."

}

Since we don’t like the default column title for the effort column we change it to "Work". Dates should
be displayed as Sun 2003-09-29, so we use the attribute timeformat. For the overview page we don’t
like to have load values in the calendar. We just want to have the Gantt chart like bars that visualize the
duration of the tasks. Since the load values are reported by default, we use the attribute barlabels to

32

Chapter 4. Tutorial: Your First Project

surpress them. With the headline attribute we can specify a headline for the report. To have a little more
info included as well, we use the caption attribute. Both of these attributes are followed by the string to
be included into the report.

Now we like to generate a report that contains a lot more details about the task. The weekly calendar is
replaced by a daily calendar. The weekly calendar had a column for each week. The daily calendar
features a column for each day. The column includes the load for the task for the week or day and a
colored background in case the task is active that day or week.

htmltaskreport "Tasks-Details.html" {
${navbar}
columns no, name, start, end, scenario, daily
start 2002-03-01
end 2002-04-01
scenarios plan, delayed
headline "Accounting Software Project - March 2002"
caption "This table shows the load of each day for all the tasks.
Additionally the resources used for each task are listed. Since the
project start was delayed, the delayed schedule differs significantly
from the original plan."

hideresource 0
}

In order to limit the report to a reasonable size, we limit the daily calendar to the interval 2002-03-01 -
2002-04-01 with the start and end attributes. We also like to list all assigned resources right after each
task. Normally resources are hidden in task reports but they can be enabled by using the hideresource
attribute. The attribute is followed by a logical expression that specifies what resources to hide. The
expression is evaluated for each resource and if the result is true (not 0) than the resource is hidden.
Since we want to show all resources we put a 0 in, so it’s false for all resources.

To add even more information to this report, we also turn on the reporting of values of the delayed
scenario by using the scenarios attribute. This causes TaskJuggler to split the lines of the report into one
for each scenario where appropriate and report the values underneath each other.

4.7.4. Generating HTML Resource Reports

The previous report listed the resources per task. Now we want to generate a report the lists all resources.
It’s again a report with a weekly calendar. This time we use the attribute loadunit to report the load in
hours instead of days.

htmlresourcereport "Staff-Overview.html" {
${navbar}

33

Chapter 4. Tutorial: Your First Project

columns no, name, scenario, weekly, effort
scenarios plan, delayed
loadunit hours
headline "Weekly working hours for the Accounting Software Project"

}

Now a similar report but with much more details. We want to include the tasks again, this time each
resource should be followed by the tasks the resource is assigned to. In htmltaskreports resources are
hidden by default while in htmlresourcereports tasks are hidden by default. To include tasks the attribute
hidetask needs to be used. It is followed by a logical expression just like hideresource.

htmlresourcereport "Staff-Details.html" {
${navbar}
columns name, daily, effort
start 2002-03-01
end 2002-04-01
hidetask 0
hideresource team
sortresources nameup
loadunit hours
headline "Daily working hours for the Accounting Software Project -
March 2002"

}

When specifying the resources we have grouped the resources into two teams by creating two pseudo
resources that had the real employees as sub resources. We have attached the flag team to those pseudo
resources. We now use this flag as logical expression for hideresource. So all resources that have this flag
will be hidden in the report. For better readability we sort the resource list by name in ascending order.
The attribute sortresources is taking care of this.

4.7.5. Generating HTML Account Reports

To conclude the HTML reports a report that shows how poorly the project is calculated is generated. The
company won’t get rich with this project. Due to the slip, it actually needs a loan from the bank to pay
the salaries.

htmlaccountreport "Accounting.html" {
${navbar}
columns no, name, total, monthly
headline "P&L for the Accounting Software Project"
caption "The table shows the profit and loss analysis as well as the

34

Chapter 4. Tutorial: Your First Project

cashflow situation of the Accounting Software Project."
accumulate
scenarios plan, delayed
}

The htmlaccountreport property produces similar reports as the above ones, but it lists accounts instead
of tasks or resources. The total column shows the value of the account at the end of the reported time
interval. The accumulate attribute puts the calendar in accumulation mode. The monthly columns list the
value of the account at the end of the month. Normally the amount that has been added or subtracted
from the account would be listed.

4.7.6. Generating XML Reports

Finally we generate an XML report that contains all info about the scheduled project. This report will be
used by tjx2gantt to create a nice GANTT chart of our project. The file can also be read by tools like
tjGUI or the KDE Konqueror plug-in. Since the Konqueror plug-in already uses the new, version 2 XML
format, you have to comment out the version attribute.

xmlreport "AccountingSoftware.tjx" {
#version 2
}

35

Chapter 5. Usage Guide

5.1. Tracking the Project

Once the initial plan has been made and the project has started TaskJuggler can be turned from a
planning tool into a tracking tools. You don’t have to change a lot to do this. After all, as the initial plan
is almost always just a first guess, you need to continue planning your project as new details become
evident. So what you really want is a way to gradully freeze the plan as work has been completed, while
still having full flexibility with all future work.

While it is generally accepted to invest some amount of time into the project planning, it is very common
that once the project has been started, project managers tend to avoid a proper tracking of the project.
Our bet is that the vast majority of project plans are only made to get management or investor approval.
After the approval phase, many project managers only work with their project plan again when the
project is running really late. On the other hand there are projects which are done using strict project
management techniques that require detailed status tracking. Both extremes probably have their fans and
TaskJuggler offers good support for both extremes as well as various techniques in between.

5.1.1. Recording Progress

As mentioned previously, your initial project plan is only a first estimate of how the project will progress.
During the course of the project you will have to make changes to the plan as new information needs to
be taken into account and you probably want to track the progress of the project in a formalized form.
TaskJuggler will support you during this phase of the project as well, but it needs your help. You need to
provide the additional information in the project file. In return you get current status reports and an
updated project plan based on the current status of the project.

The most simple form of capturing where you are with the project is to use the complete attribute.

task impl "Implementation" {
depends !spec
effort 4w
allocate dev1, dev2
complete 50

}

This tells TaskJuggler that 50% of the task’s effort has been completed by the current date. Tasks that
have no completetion specification will be assumed to be on track. TaskJuggler calculates the completion
degree based on the current date. Completion specifications only need to be supplied for tasks that are

36

Chapter 5. Usage Guide

either ahead of schedule or behind schedule. Please keep in mind that the completion degree does not
affect the scheduling and resource allocation. It is only for reporting purposes. It also does not tell
TaskJuggler which resource actually worked on the tasks.

If you want the past work to affect scheduling you need to use the booking statements as outlined in the
next section.

When your project plan reflects the current status of your project TaskJuggler can generate nice status
reports for you. To generate a HTML report for the last week that lists all tasks that are running late, all
tasks that are ongoing, tasks that have been completed the last week and task that will be started next
week you just have to specify the following.

htmlstatusreport "Status-Report.html" {
}

5.1.2. Recording Resource Usage

The initial project plan should be made by entering the minimum necessary amount of information such
as task dependencies and efforts. TaskJuggler will then compute all the missing data based on this. This
is your project baseline. As the project progresses you can now track the actually completed work by
recording the work that your resources have done. Let’s assume you had the following task in your
original plan.

task impl "Implementation" {
depends !spec
effort 4w
allocate dev1, dev2

}

After the first week of work on this task the two resources have really been able to complete half the job.
You can capture this in your project plan using the booking attribute. Bookings are resource specific, so
you have to add the booking to the resource definition, not the task definition.

resource dev1 "Developer 1" {
booking 2005-04-11 2005-04-16 impl { sloppy 2 }

}

resource dev2 "Developer 2" {

37

Chapter 5. Usage Guide

booking 2005-04-11 2005-04-16 impl { sloppy 2 }
}

The sloppy attribute defines the accuracy of your bookings. If it’s missing or 0 the booking must only
describe a continuous working period during working hours. With higher values the inverval may overlap
with off-hour or vacation time slots. See details on sloppy.

If you don’t like to mix the resource definitions and their bookings, you can specify the bookings with
supplement statements. These supplement statements can even reside in an other file. Some companies
have created a web front-end for their developers to report the completed work against the project plan.
The reports are stored in a database and include files for TaskJuggler are generated from this database.
This way the project manager gets a very current status of the project and can compute the current
project plan based on this data without much effort. If you are interested in this you should have a look at
the download section of the TaskJuggler web site (http://www.taskjuggler.org).

As a side note we would like to mention that the recording of the work time of employees is regulated by
labor law in certain countries. You might also need approval from a Worker’s Council before you can
deploy time recording tools.

In case your actual progress does not deviate a lot from your project plan, you can generate the file with
the booking statements automatically.

export "DoneWork-Week15.tji" {
hideresource 0
start 2005-04-11
end 2005-04-16
properties bookings

}

This will generate a TaskJuggler include file that contains all bookings according to the project plan for
the specified interval. You can then use this file as a baseline and modify it to reflect the real work that
has happened during the interval. After that you can include it into your project again.

include "DoneWork-Week15.tji"

As this include file references the tasks and resources of your project you should include it after all task
and resource definitions.

38

Chapter 5. Usage Guide

To make TaskJuggler aware that you want to compute the end date based on the bookings and the effort
you need to enable the projection mode for the scenario. This needs to be done in the scenario definition
in the project header. If you don’t have a scenario definition because you are only using the built-in
default scenario, you have to add a scenario definition.

project prj "Project" "1.0" 2005-04-01 2005-05-01 {
scenario plan "Plan" {
Compute when the task will be ready based on the already
done work and the current date.
projection

}
}

TaskJuggler now assumes that for all tasks that have bookings all work has been specified with bookings
up to the current date. It then calculates the end date of the task based on the effort that is still left over. It
also computes the complete value based on the specified bookings. So if you specify bookings for a task
you should not specify a booking as well. It will be ignored and replaced by a value based on the
specified bookings.

When you now schedule the project again, it will take these bookings into account and generate a new
project plan based on your current project status.

Each time you review your project status you should generate such an include file for the period that you
are reviewing. Then you sync the content with the feedback that you get from your resources and add the
file to the project plan.

5.2. Freezing your project as it progresses

During the planning phase of the project you want to specify as little as necessary and have TaskJuggler
calculate the rest of the project variables. As the project progresses more and more variables turn into
constants. Whenever this happens, you should tell TaskJuggler about it. If you don’t do it, TaskJuggler
will assume that it has full freedom to pick these values and you will end up with a project plan that has
nothing to do with the past part of the project. Especially when you have a fairly dense resource
allocation the plan will become very dynamic. Small changes in the plan can result in a significantly
different scheduling result. The scheduling algorithm that is used by TaskJuggler is fairly complex and
always tries to achieve the best possible result. It does not know that you have scheduled the project
before and expect a similar result after the changes. The result is always correct according to the
specification you have entered, but it can differ a lot even after fairly small changes. That is why you
have to tell TaskJuggler when scheduled values have become reality and are no longer flexible.

39

Chapter 5. Usage Guide

Once a task has been completed it is a good idea to remove the allocation statements from the tasks to
prevent accidental resource allocations when the bookings don’t exactly sum-up to the required effort. If
you have specifed all work on a task by bookings you could also remove any hardcoded start and end
dates as well as dependencies, but this is not required. You just have overspecified the task. In case you
have made contradicting statements, TaskJuggler will issue an error message. This is for example the
case when you have a fixed start date and a booking that starts earlier than the start date.

In general it is perfectly ok to overspecify your project. For example, you can have a fixed start date on a
task as well as a start dependency. As long as they don’t contradict each other, they can peacefully live
together and you can use them as additional check points.

40

Chapter 6. Language Reference

6.1. Comments

There are two ways to annotate a project file with comments. All text after a ’#’ will be ignored.
Comments that span multiple rows must be started with ’/*’ and ended with ’*/’.

6.2. Attribute Classes

6.2.1. DATE

A DATE is an ISO-compliant date in the format YYYY-MM-DD[-hh:mm[:ss]][-TIMEZONE]. Hour,
minutes, seconds and the TIMEZONE are optional. If not specified, the values are set to 0. The local
timezone or the default timezone is used if no other is specified. If the timezone is not known taskjuggler
will fall back to UTC (GMT). The value of TIMEZONE can either be a timezone name or since this can
be ambiguous, the offset to GMT as +HHMM or -HHMM. See the source code
(taskjuggler/Utility.cpp) for details.

6.2.2. DATEINTERVAL

A date interval consists of a start and end DATE. The end date is optional. If it is missing a 24 hour
interval is assumed. The start and end date must be seperated by a dash character.

6.2.3. GLOBAL_ID

A GLOBAL_ID may have the same characters as ID, but additionally may contain ’.’ and ’!’. ’!’ may
only be used at the beginning and is used in relative IDs. A ’!’ means one level up.

6.2.4. ID

A string that may consist of the characters A-Z, a-z, 0-9, and _. It may not start with a number.

6.2.5. INTEGER

A number that is an integer.

41

Chapter 6. Language Reference

6.2.6. LOGICALEXPRESSION

This is a logical expression consisting of logical operations, such as ’&’ for and, ’|’ for or, ’~’ for not, ’>’
for greater than, ’<’ for less than, ’=’ for equal, ’>=’ for greater than or equal and ’<=’ for less than or
equal to operate on INTEGER values or symbols. As symbols flag names and certain functions are
supported. The expression is evaluated from left to right. ’~’ has a higher precedence than other
operators. Use braces to avoid ambiguous operations. If flagFoo, flagFooBar, and flagBar are declared
flags, the following example is a correct expression:

(flagFoo | flagFooBar) & ~flagBar

The following functions can be used in logical expressions:

isChildOf(ID)

true if the property has ID as sub.

isParentOf(ID)

true if the property has ID as enclosing property.

isLeaf(ID)

true if the property has no sub properties.

endsAfter(ID, DATE)

true if the task ends in scenario ID after the specified date

endsBefore(ID, DATE)

true if the task ends in scenario ID before the specified date

isAnAccount()

true if the property is an account

isAccount(ID)

true if the account has the listed ID

isAllocated(ID, DATE, DATE)

true if the resource has been allocated in the specified time interval in the scenario with the specified
ID.

isAllocatedToProject(PRJID SCENARIOID, DATE, DATE)

true if the resource has been allocated to the specified project in the specified time interval in the
scenario with the specified ID.

42

Chapter 6. Language Reference

isMilestone()

true if the task is a milestone.

isAResource()

true if the property is a resource ID.

isResource(ID)

true if the resource has the listed ID.

isATask()

true if the property is a task.

isTask(ID)

true if the task has the listed ID.

isTaskStatus(ID, STATUS)

true if the task has in scenario ID the specified status. STATUS can be any of notstarted,
inprogresslate, inprogress, ontime, inprogressearly, late, finished.

startsAfter(ID, DATE)

true if the task starts in scenario ID after the specified date

startsBefore(ID, DATE)

true if the task starts in scenario ID before the specified date

isTaskOfProject(ID)

true if the task is part of the project with the specified ID.

isDutyOf(RESOURCE_ID, SCENARIO_ID)

true if the resource with the specified ID is assigned to the task in the specified scenrio.

treeLevel()

Nesting level of the property.

6.2.7. REAL

A real number (e.g., 3.14).

6.2.8. SORTINGCRITERIA

See attribute description for allowed values.

43

Chapter 6. Language Reference

6.2.9. STRING

A string may contain any characters and is enclosed in single quotes or double quotes. A single quoted
string may contain double quote characters and vice versa. A string may include line breaks.

6.2.10. TIME

A time in the format HH:MM.

6.2.11. TIME

A time interval consists of a start and end TIME. The start and end time must be separated by a dash
character.

6.2.12. UNIT

May be min for minutes, h for hours, d for days, w for weeks, m for months, y for years. Week, month
and year specifications are only approximated values and are handled slightly different for length, effort
and duration intervals. For length and effort only working days are counted. The number or working days
per week, month or year is determined by the setting of yearlyworkingdays. The number of working
hours or minutes per working day is determined by the setting of dailyworkinghours.

6.2.13. WEEKDAY

May be

mon for Monday
tue for Tuesday
wed for Wednesday
thu for Thursday
fri for Friday
sat for Saturday
sun for Sunday

Optional attributes of a property must be enclosed by {}.

44

Chapter 7. Property Reference

7.1. The TJP File

The TJP File
Description All TaskJuggler project files should start with the project property and must

contain at least one task definition. To visualize the results of the scheduling
process, at least one of the reports should be specified.

Optional Attributes account, copyright, csvaccountreport, csvresourcereport, csvtaskreport,
export, flags, htmlaccountreport, htmlresourcereport, htmlstatusreport,
htmltaskreport, htmlweeklycalendar, include, macro, maxeffort, limits,
priority, projectid, projectids, project, rate, resource, shift, supplement, task,
vacation, xmlreport

Context
Inheritable No Scenario Spec. No

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

taskreport "My Tasks"

45

Chapter 7. Property Reference

7.2. account <id> <name> [<type>]

account <id> <name> [<type>]
Description Declares an account. Accounts can be used to calculate costs of tasks or the

whole project. Account declaration may be nested, but only the top level
accounts may have a type attribute specified. An account that has
sub-accounts may not have a credit or a kotrusid. sub-accounts inherit this
type.

Attributes Name Type Description

id ID Each account must have
a unique ID.

name STRING
type ID The type may be cost

or revenue.

Optional Attributes account, credit, kotrusid

Context The TJP File, account,

Inheritable No Scenario Spec. No

See also csvaccountreport, htmlaccountreport

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26 {
currency "USD"

}

account project_cost "Project Costs" cost
account payments "Customer Payments" revenue {
credit 2005-06-08 "Customer down payment" 500.0

}

resource tux "Tux" {
rate 300

}

task items "Project breakdown" {
start 2005-06-06
The default account for all tasks
account project_cost

task plan "Plan work" {
Some upfront material cost
startcredit 500.0
length 3d

}

46

Chapter 7. Property Reference

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation
account payments
Customer pays at end of acceptance
endcredit 2000.0

}
}

htmlaccountreport "PAndL.html" {
timeformat "%d-%M-%y"
accumulate
columns index, name, weekly

}

7.3. account <accountid>

account <accountid>
Description All amounts associated with the task will be credited to the specified account.

Attributes Name Type Description

accountid ID

Context task,

Inheritable Yes Scenario Spec. No

See also account

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26 {
currency "USD"

}

account project_cost "Project Costs" cost
account payments "Customer Payments" revenue {

47

Chapter 7. Property Reference

credit 2005-06-08 "Customer down payment" 500.0
}

resource tux "Tux" {
rate 300

}

task items "Project breakdown" {
start 2005-06-06
The default account for all tasks
account project_cost

task plan "Plan work" {
Some upfront material cost
startcredit 500.0
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation
account payments
Customer pays at end of acceptance
endcredit 2000.0

}
}

htmlaccountreport "PAndL.html" {
timeformat "%d-%M-%y"
accumulate
columns index, name, weekly

}

7.4. accumulate

accumulate
Description If this attribute is specified the values in the calendar columns are

accumulated over the reported interval.

48

Chapter 7. Property Reference

accumulate
Context csvaccountreport, csvresourcereport, csvtaskreport, htmlaccountreport,

htmlresourcereport, htmltaskreport, htmlweeklycalendar,

Inheritable No Scenario Spec. No

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26 {
currency "USD"

}

account project_cost "Project Costs" cost
account payments "Customer Payments" revenue {
credit 2005-06-08 "Customer down payment" 500.0

}

resource tux "Tux" {
rate 300

}

task items "Project breakdown" {
start 2005-06-06
The default account for all tasks
account project_cost

task plan "Plan work" {
Some upfront material cost
startcredit 500.0
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation
account payments
Customer pays at end of acceptance
endcredit 2000.0

}
}

htmlaccountreport "PAndL.html" {
timeformat "%d-%M-%y"
accumulate
columns index, name, weekly

}

49

Chapter 7. Property Reference

7.5. allowredefinition

allowredefinition
Description If this attribute is specified, redefinitions of task, resources or accounts are

not flagged as errors. The primary use of this attribute is for projects that are
created by merging sub projects which are again the result of sub project
merging. In certain situations enclosing tasks, accounts or resources can be
included in more than one sub project. This attribute then avoids the error
message which is in most other cases a real user error. So use this feature
with care as real errors might go undetected.
In case attributes of the same property must be specified in two different
locations the supplement construct is the recommended way to do this.

Context project,

Inheritable No Scenario Spec. No

7.6. allocate <resource>

allocate <resource>
Description Specify which resources should be allocated to the task.

Attributes Name Type Description

resource ID

Optional Attributes alternative, limits, mandatory, persistent, select, shift

Context task,

Inheritable Yes Scenario Spec. No

See also effort

project allocate "allocate" "1.0" 2003-06-05 2003-07-05

resource r1 "Resource 1"

50

Chapter 7. Property Reference

resource r2 "Resource 2"

task t1 "Task 1" {
start 2003-06-05
All sub-tasks inherit this allocation of r1
allocate r1
task t2 "Task 2" {
effort 10d

}
task t3 "Task 3" {
effort 20d
This task has r1 and r2 allocated
allocate r2

}
task m1 "Milestone 1" {
milestone

}
}

7.7. alternative <resource> [, <resource> ...]

alternative <resource> [, <resource> ...]
Description A list of alternative resources for an allocation. There is no difference

between the allocated resource and its alternatives. If no selection criteria is
given, TaskJuggler picks the resource that it finds most appropriate.

Attributes Name Type Description

resource ID

Context allocate,

Inheritable No Scenario Spec. No

See also select

project prj "Project" "1.0" 2000-01-01 2000-03-01

resource tuxus "Tuxus"
resource tuxia "Tuxia"

task t "Task" {
start 2000-01-01
effort 5d
Use tuxux or tuxia, whoever is available.

51

Chapter 7. Property Reference

allocate tuxus { alternative tuxia }
}

7.8. barlabels <mode>

barlabels <mode>
Description Specifies the contense of the Gantt chart like bars in HTML calendar

columns. The default is to show load values.

Attributes Name Type Description

mode ID See table below for
possible values.

Context htmlresourcereport, htmltaskreport, htmlweeklycalendar,

Inheritable No Scenario Spec. No

See also columns, showprojectids

empty Do not show any values on calendar bars.
load Show task or resource load on calendar bars.

7.9. booking <start> <end> <task>

booking <start> <end> <task>
Description The booking attribute can be used to report completed work. This can be

part of the necessary effort or the whole effort. When the scenario is
scheduled in projection mode, TaskJuggler assumes that only the work
reported with bookings has been done up to now. It then schedules a plan
for the still missing effort.
This attribute is also used within export reports to describe the details of a
scheduled project.

The sloppy attribute can be used when you want to skip non-working time
or other allocations automatically. If it’s not given, all bookings must only
cover working time for the resource.

52

Chapter 7. Property Reference

booking <start> <end> <task>
Attributes Name Type Description

start DATE
end DATE
task ID

Optional Attributes sloppy

Context resource,

Inheritable No Scenario Spec. Yes

See also projection

project prj "Project" "1.0" 2003-06-05 2003-07-05 {
The baseline date for the projection.
now 2003-06-15
scenario plan "Plan" {
Compute when the task will be ready based on the already done
work and the current date.
projection

}
}

resource r1 "Resource 1"

task t1 "Task 1" {
start 2003-06-05
effort 10d
allocate r1

}

supplement resource r1 {
This is the work that has been done up until now by r1.
booking 2003-06-06 2003-06-07 t1 { sloppy 2 }
booking 2003-06-08 2003-06-09 t1 { sloppy 2 }
booking 2003-06-11 2003-06-12 t1 { sloppy 2 }

}

7.10. caption <text>

caption <text>
Description Specifies the caption used for a report table.

53

Chapter 7. Property Reference

caption <text>
Attributes Name Type Description

text STRING

Context htmlaccountreport, htmlresourcereport, htmlstatusreport, htmltaskreport,
htmlweeklycalendar, resourcereport, taskreport,

Inheritable No Scenario Spec. No

See also complete, copyright, headline

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26

copyright "Bucks Beavis Inc."

resource tux "Tux"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

htmltaskreport "ProjectBreakdown.html" {
caption "This is the project breakdown"
headline "Project Breakdown"
columns name, start, end, daily
Don’t hide any resource, meaning show them all.
hideresource 0

}

54

Chapter 7. Property Reference

7.11. celltext <text>

celltext <text>
Description Specifies an alternative text that is used for all cells of the column. Usually

such a text contains a runtime macro, otherwise all cells of the column will
have the same fixed value.

Attributes Name Type Description

text STRING

Context columns,

Inheritable No Scenario Spec. No

See also cellurl

project prj "Project" "1.0" 2005-01-01 2005-03-01

resource r "Resource"

task t "Task" {
task s "SubTask" {
start 2005-01-01
effort 5d
allocate r

}
}

Just a very basic report with some standard columns
htmltaskreport "SimpleReport.html" {
columns hierarchindex, name, start, end, weekly

}

Report with custom colum title
htmltaskreport "CustomTitle.html" {
columns hierarchindex, name { title "Work Item" }, effort

}

Report with custom colum title and subtitle
htmltaskreport "CustomSubTitle.html" {
columns hierarchindex, name,

monthly { title " " subtitle "$${month} $${year}" }
loadunit days

}

Report with efforts only for leaf tasks
htmltaskreport "LeafEfforts.html" {
columns hierarchindex, name,

55

Chapter 7. Property Reference

effort { hidecelltext ~isLeaf() }
}

Report with link in title of calendar
htmltaskreport "LinkURL.html" {
columns hierarchindex, name,

monthly { subtitleurl "Monthly-Detail-$${month}.html" }
}

Report with link to page with furter task details
htmltaskreport "LinkToTaskDetails.html" {
columns hierarchindex,

name { cellurl "TaskDetails-$${taskid}.html"
hidecellurl ~isLeaf() }, start, end

}

Report with index and task name combined in one single column
htmltaskreport "CombinedColumn.html" {
columns name { celltext "$${hierarchno} $${0}"}, start, end, weekly

}

7.12. cellurl <url>

cellurl <url>
Description Specifies an URL that is attached to the cell contense of the cells of the

column in HTML reports.

Attributes Name Type Description

url STRING

Context columns,

Inheritable No Scenario Spec. No

See also celltext

project prj "Project" "1.0" 2005-01-01 2005-03-01

resource r "Resource"

task t "Task" {
task s "SubTask" {
start 2005-01-01

56

Chapter 7. Property Reference

effort 5d
allocate r

}
}

Just a very basic report with some standard columns
htmltaskreport "SimpleReport.html" {
columns hierarchindex, name, start, end, weekly

}

Report with custom colum title
htmltaskreport "CustomTitle.html" {
columns hierarchindex, name { title "Work Item" }, effort

}

Report with custom colum title and subtitle
htmltaskreport "CustomSubTitle.html" {
columns hierarchindex, name,

monthly { title " " subtitle "$${month} $${year}" }
loadunit days

}

Report with efforts only for leaf tasks
htmltaskreport "LeafEfforts.html" {
columns hierarchindex, name,

effort { hidecelltext ~isLeaf() }
}

Report with link in title of calendar
htmltaskreport "LinkURL.html" {
columns hierarchindex, name,

monthly { subtitleurl "Monthly-Detail-$${month}.html" }
}

Report with link to page with furter task details
htmltaskreport "LinkToTaskDetails.html" {
columns hierarchindex,

name { cellurl "TaskDetails-$${taskid}.html"
hidecellurl ~isLeaf() }, start, end

}

Report with index and task name combined in one single column
htmltaskreport "CombinedColumn.html" {
columns name { celltext "$${hierarchno} $${0}"}, start, end, weekly

}

57

Chapter 7. Property Reference

7.13. columns <columnid> [, <columnid> ...]

columns <columnid> [, <columnid> ...]
Description Specifies which columns shell be included in a report.

All columns support macro expansion. Contrary to the normal macro
expansion, these macros are expanded during the report generation. So the
value of the macro is being changed after each table cell or table line.
Consequently only build in macros can be used. To protect the macro calls
agains expansion during the initial file processing, the report macros must
be prefixed with an additional $.

Attributes Name Type Description

columnid ID See table below for
possible values.

Optional Attributes celltext, cellurl, hidecelltext, hidecellurl, subtitle, subtitleurl, title, titleurl

Context csvaccountreport, csvresourcereport, csvtaskreport, htmlaccountreport,
htmlresourcereport, htmltaskreport, htmlweeklycalendar, resourcereport,
taskreport,

Inheritable No Scenario Spec. No

completed The percentage the task has been completed already. This is either the value specified by complete or a value computed according to the current date (or the date specified by now) and the length, duration or effort.
cost The accumulated costs of the task and its sub tasks
criticalness The criticalness of the task. It is a measure for the probability that an effort task gets the requested resources early.
cost The accumulated costs of the task and its sub tasks
daily A day-by-day calendar view of the tasks
depends The task index of the tasks on which this task depends
duration The duration of the task
efficiency The efficiency of the resource. It’s a measurement of how much the resource can contribute to the workload of tasks.
effort The effort put into the task
end The end date of a task
endbuffer The percentage of the endbuffer
endbufferstart The start time of the end buffer
flags The list of flags assigned to the task or resource
follows The task index of the tasks that depend on this task
freeload The workload of the resource that has not been allocated.
hierarchindex The hierarchical index of a task. The index is calculated from the hierachical structure of the list as well as the start and end dates.
hierarchno The hierarchical number of a task. It is based on the order of declaration.
id The global ID of a task
index The index of a task. The index is calculated from the hierachical structure of the list as well as the start and end dates.
kotrusid The KotrRUs ID of the resource
maxeffort The maximum daily load wanted for the resource
maxend The latest desired end date
maxstart The latest desired start date
mineffort The minimum daily load wanted for the resource
minend The earliest desired end date
minstart The earliest desired start date
monthly A month-by-month calendar view of the tasks
name The name of a task, resource, or account

58

Chapter 7. Property Reference

no The task index in the list. It starts with 1 and increases for every listed item by 1.
note The description of the task
pathcriticalness The overall criticalness of the task. It is a measure for the probability that an effort task gets scheduled as early as possible. The tasks of the most critical path have the highest path criticalness.
priority The scheduling priority
profit The accumulated profit of the task and its sub tasks
projectid The project ID of the task
projectids The project IDs of the projects a resource is allocated to
quarterly A quarter-by-quarter calendar view of the tasks
rate The daily rate of the resource
reference A reference to a URL that contains further information.
resources The names of the used resources
responsibilies A list of all tasks indicies for which a resource is responsible
responsible The name of the resource responsible for a task
revenue The accumulated revenue of the task and its sub tasks
scenario The name of the scenario. This column is helpful when multiple scenarios are shown in the table. See also scenarios.
seqno The task index in the order of declaration. Each time a task declaration is completed, the sequence number is increased by 1.
schedule A detailed schedule of the allocations for the resource.
start The start date of a task
startbuffer The percentage of the start buffer
startbufferend The end time of the start buffer
status The current status of the task. This is derived from the current date or the date specified by now and the degree of completion. The degree of completion is either computed or has been specified by complete.
total Total accumulated values
utilization The ratio between the allocated work load of the resource and it’s overall available work load.
weekly A week-by-week calendar view of the tasks
yearly A year-by-year calendar view of the tasks

The following macros are supported for normal table cells:

$${0} This is the original value of the table cell. This macro is useful if the user would like to extend the cell text with a fixed string.
$${accountid} The ID of the account.
$${resourceid} The ID of the resource.
$${taskid} the id of the task.

Additionally the original contense of other cells of the same report line can be accessed by the column
ID. The following columns are supported:

index, no, hierachindex, hierachno, id, name

For the title or sub title of the calendar columns (daily, weekly, monthly, quarterly, yearly)
the following macros are supported:

$${day}, $${month}, $${week}, $${quarter}, $${year}.

project prj "Project" "1.0" 2005-01-01 2005-03-01

resource r "Resource"

task t "Task" {
task s "SubTask" {

59

Chapter 7. Property Reference

start 2005-01-01
effort 5d
allocate r

}
}

Just a very basic report with some standard columns
htmltaskreport "SimpleReport.html" {
columns hierarchindex, name, start, end, weekly

}

Report with custom colum title
htmltaskreport "CustomTitle.html" {
columns hierarchindex, name { title "Work Item" }, effort

}

Report with custom colum title and subtitle
htmltaskreport "CustomSubTitle.html" {
columns hierarchindex, name,

monthly { title " " subtitle "$${month} $${year}" }
loadunit days

}

Report with efforts only for leaf tasks
htmltaskreport "LeafEfforts.html" {
columns hierarchindex, name,

effort { hidecelltext ~isLeaf() }
}

Report with link in title of calendar
htmltaskreport "LinkURL.html" {
columns hierarchindex, name,

monthly { subtitleurl "Monthly-Detail-$${month}.html" }
}

Report with link to page with furter task details
htmltaskreport "LinkToTaskDetails.html" {
columns hierarchindex,

name { cellurl "TaskDetails-$${taskid}.html"
hidecellurl ~isLeaf() }, start, end

}

Report with index and task name combined in one single column
htmltaskreport "CombinedColumn.html" {
columns name { celltext "$${hierarchno} $${0}"}, start, end, weekly

}

60

Chapter 7. Property Reference

7.14. complete <percent>

complete <percent>
Description Specifies what percentage of the task is already completed. This can be

useful for project tracking. Reports with calendar elements may show the
completed part of the task in a different color.
Tasks may not have subtasks if this attribute is used.

Attributes Name Type Description

percent INTEGER The value must be
between 0 and 100.

Context task,

Inheritable No Scenario Spec. Yes

project simple "Some task" "1.0" 2005-06-06 2005-06-26 {
now 2005-06-15

}

resource tux "Tux"

task t "Task" {
start 2005-06-06
effort 10d
allocate tux
This task should have be be completed much more on Jun 15, but
it’s only 20% done.
complete 20

}

7.15. copyright <text>

copyright <text>
Description Adds a copyright notice to all subsequently defined reports. This notice may

contain any text. The notice is added at the bottom of the report.

Attributes Name Type Description

61

Chapter 7. Property Reference

copyright <text>
text STRING

Context The TJP File,

Inheritable No Scenario Spec. No

See also headline, caption

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26

copyright "Bucks Beavis Inc."

resource tux "Tux"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

htmltaskreport "ProjectBreakdown.html" {
caption "This is the project breakdown"
headline "Project Breakdown"
columns name, start, end, daily
Don’t hide any resource, meaning show them all.
hideresource 0

}

7.16. credit <date> <description> <amount>

62

Chapter 7. Property Reference

credit <date> <description> <amount>
Description Credits the specified amount to the account at the specified date. The

description should contain some information about the reason for the
transaction.

Attributes Name Type Description

date DATE
description STRING
amount REAL

Context account,

Inheritable No Scenario Spec. No

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26 {
currency "USD"

}

account project_cost "Project Costs" cost
account payments "Customer Payments" revenue {
credit 2005-06-08 "Customer down payment" 500.0

}

resource tux "Tux" {
rate 300

}

task items "Project breakdown" {
start 2005-06-06
The default account for all tasks
account project_cost

task plan "Plan work" {
Some upfront material cost
startcredit 500.0
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation
account payments
Customer pays at end of acceptance

63

Chapter 7. Property Reference

endcredit 2000.0
}

}

htmlaccountreport "PAndL.html" {
timeformat "%d-%M-%y"
accumulate
columns index, name, weekly

}

7.17. csvaccountreport <filename>

csvaccountreport <filename>
Description The report lists all specified account values as a comma separated list. This is

usefull to export TaskJuggler data to Office Suites like OpenOffice.org or
KOffice.

Attributes Name Type Description

filename STRING

Optional Attributes accumulate, columns, end, rollupaccount, hideaccount, sortaccounts, start

Context The TJP File,

Inheritable No Scenario Spec. No

See also htmlaccountreport

7.18. csvresourcereport <filename>

csvresourcereport <filename>
Description The report lists all specified resource values as a comma separated list. This

is usefull to export TaskJuggler data to Office Suites like OpenOffice.org or
KOffice.

Attributes Name Type Description

filename STRING

Optional Attributes accumulate, columns, end, rollupresrouce, hideresource, sortresources, start

Context The TJP File,

64

Chapter 7. Property Reference

csvresourcereport <filename>
Inheritable No Scenario Spec. No

See also htmlresourcereport, resourcereport

7.19. csvtaskreport <filename>

csvtaskreport <filename>
Description The report lists all specified task values as a comma separated list. This is

usefull to export TaskJuggler data to Office Suites like OpenOffice.org or
KOffice.

Attributes Name Type Description

filename STRING

Optional Attributes accumulate, columns, end, rolluptask, hidetask, sorttasks, start

Context The TJP File,

Inheritable No Scenario Spec. No

See also htmltaskreport, taskreport

7.20. currency <text>

currency <text>
Description The default currency unit.

Attributes Name Type Description

text STRING

Context project,

Inheritable No Scenario Spec. No

See also currencyformat

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26 {
currency "USD"

}

65

Chapter 7. Property Reference

account project_cost "Project Costs" cost
account payments "Customer Payments" revenue {
credit 2005-06-08 "Customer down payment" 500.0

}

resource tux "Tux" {
rate 300

}

task items "Project breakdown" {
start 2005-06-06
The default account for all tasks
account project_cost

task plan "Plan work" {
Some upfront material cost
startcredit 500.0
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation
account payments
Customer pays at end of acceptance
endcredit 2000.0

}
}

htmlaccountreport "PAndL.html" {
timeformat "%d-%M-%y"
accumulate
columns index, name, weekly

}

66

Chapter 7. Property Reference

7.21. currencyformat <negativeprefix>
<negativesuffix> <thousandseparator>
<fractionseparator> <fractiondigits>

currencyformat <negativeprefix> <negativesuffix> <thousandseparator>
<fractionseparator> <fractiondigits>
Description These values specify the default format used for all currency values. The

negativeprefix and negativesuffix strings enclose negative currency
values. The thousandseparator can be used to make large numbers more
readable. The fractionseparator separates the fractional part from the
rest. fractiondigits specifies how many fractional digits should be
shown at a maximum.

Attributes Name Type Description

negativeprefix STRING
negativesuffix STRING
thousandseparator STRING
fractionseparator STRING
fractiondigits INTEGER

Context project,

Inheritable Yes Scenario Spec. No

See also currency

project prj "Project" "1.0" 2000-01-01 2000-03-01 {
German number format: e. g. -10000,20 5014,11
numberformat "-" "" "" "," 2

US currency format: e. g. (10,000.20) 5,014.11
currencyformat "(" ")" "," "." 2

}

task t "Task" {
start 2000-01-01
milestone

}

67

Chapter 7. Property Reference

7.22. dailymax <value> <unit>

dailymax <value> <unit>
Description Sets the daily limit of a resource usage or a resource allocation to a task.

Attributes Name Type Description

value REAL
unit UNIT

Context limits,

Inheritable Yes Scenario Spec. No

See also monthlymax, weeklymax

project limits "Limits" "1.0" 2004-03-01 2004-05-01

Default limit that affects all subsequently defined resources
limits {
weeklymax 4d

}

resource r1 "R1" {
Limit the usage of this resource to a maximum of 2 hours per day,
6 hours per week and 2.5 days per month.
limits { dailymax 2h weeklymax 6h monthlymax 2.5d }

}

resource r2 "R2"

task t1 "Task 1" {
start 2004-03-01
duration 60d
allocation is subject to resource limits
allocate r1

}

task t2 "Task 2" {
start 2004-03-01
duration 60d
limits can also be specified per allocation
allocate r2 {
limits { dailymax 4h weeklymax 3d monthlymax 2w }

}
}

68

Chapter 7. Property Reference

7.23. dailyworkinghours <hours>

dailyworkinghours <hours>
Description Set the average number of working hours per day. This is used as the base to

convert working hours into working days. This affects for example the length
task attribute. The default value is 8 hours and should work for most Western
countries. The value you specify should match the settings you specified for
workinghours.

Attributes Name Type Description

hours REAL

Context project,

Inheritable No Scenario Spec. No

See also yearlyworkingdays

project prj "Example Project" "1.0" 2000-01-01 2000-03-09 {
The following attributes are all optional. They illustrate the
default values. These attributes are only needed if you want to
specify different values than those listed below.
dailyworkinghours 8
yearlyworkingdays 260.714
timingresolution 60min
timeformat "%Y-%m-%d %H:%M"
shorttimeformat "%H:%M"
currencyformat "(" ")" "," "." 0
weekstartsmonday
workinghours sun off
workinghours mon 9:00 - 12:00, 13:00 - 18:00
workinghours tue 9:00 - 12:00, 13:00 - 18:00
workinghours wed 9:00 - 12:00, 13:00 - 18:00
workinghours thu 9:00 - 12:00, 13:00 - 18:00
workinghours fri 9:00 - 12:00, 13:00 - 18:00
workinghours sat off

scenario plan "Plan" {
}

}

task t "Task" {
start 2000-01-01

}

69

Chapter 7. Property Reference

7.24. depends <task> [, <task> ...]

depends <task> [, <task> ...]
Description Specifies that the task cannot start before the task with the specified IDs

have been finished. If multiple IDs are specified, they must be separated by
commas. IDs must be either global or relative. A relative ID starts with a
number of ’!’. Each ’!’ moves the scope to the parent task. Global IDs do
not contain ’!’, but have IDs separated by dots.
Each task ID can have optional attribues enclosed in braces.

By using the ’depends’ attribute, the scheduling policy is automatically set
to asap. If ’depends’ and ’precedes’ are used, the last policy counts.

Attributes Name Type Description

task ID

Optional Attributes gapduration, gaplength

Context task,

Inheritable No Scenario Spec. No

See also scheduling, precedes

project p "P" "1.0" 2003-11-09 2003-12-24

task foo1 "foo1" {
task foo2 "foo2" {
start 2003-12-04
milestone

}
task foo3 "foo3" {
depends !foo2
length 1d

}
}
task bar "bar" {
depends foo1.foo2
length 2d

}

task bar1 "bar1" {
depends foo1 { gapduration 2d }, bar { gaplength 1d }
duration 2d

}

70

Chapter 7. Property Reference

7.25. disabled

disabled
Description Disables the scenario for scheduling.

Context scenario,

Inheritable No Scenario Spec. No

project prj "Example" "1.0" 2005-05-29 2005-07-01 {
scenario plan "Planned Scenario" {
scenario actual "Actual Scenario"
scenario test "Test Scenario" {
disabled

}
}

}

task t "Task" {
start 2005-05-29
actual:start 2005-06-03
test:start 2005-06-07

}

7.26. duration <value> <unit>

duration <value> <unit>
Description Specifies the time the task occupies the resources. This is calender time, not

working time. 7d means one week. If resources are specified they are
allocated when available. Availability of resources has no impact on the
duration of the task. It will always be the specified duration.
Tasks may not have subtasks if this attribute is used.

Attributes Name Type Description

value REAL

71

Chapter 7. Property Reference

duration <value> <unit>
unit UNIT

Context task,

Inheritable No Scenario Spec. Yes

See also effort, length

project duration "Duration Example" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"

task t "Enclosing" {
start 2005-06-06
task durationTask "Duration Task" {
This task is 10 calendar days long.
duration 10d

}

task intervalTask "Interval Task" {
This task is similar to the durationTask. Instead of a start
date and a duration it has a fixed start and end date.
end 2005-06-17
}

task lengthTask "Length Task" {
This task 10 working days long. So about 12 calendar days.
length 10d

}

task effortTask "Effort Task" {
effort 10d
allocate tux

}
}

7.27. efficiency <value>

efficiency <value>

72

Chapter 7. Property Reference

efficiency <value>
Description The efficiency of a resource can be used for two purposes. First you can use

it as a crude way to model a team. A team of 5 people should have an
efficiency of 5.0. Keep in mind that you cannot track the member of the
team individually if you use this feature. The other use is to model
performance variations between your resources.
All resources that do not contribute effort to the task, should have an
efficiency of 0.0.

Attributes Name Type Description

value REAL

Context resource,

Inheritable Yes Scenario Spec. No

See also load

project prj "Resource Efficiency Example" "1.0" 2005-07-21 2005-07-22

A team of 5 people. They can only be assigned en block. Either all
or nobody works.
resource tuxies "Tuxies" { efficiency 5.0 }

A hard-working guy
resource tux1 "Tux 1" { efficiency 1.2 }

And a lazy one
resource tux2 "Tux 2" { efficiency 0.9 }

And a thing that cannot do any work
resource confRoom "Conference Room" { efficiency 0 }

task t "An important date" {
start 2005-07-21

}

7.28. effort <value> <unit>

effort <value> <unit>

73

Chapter 7. Property Reference

effort <value> <unit>
Description Specifies the effort needed to complete the task. An effort of 4d can be done

with 2 full-time resources in 2 days. The task will not finish before the
resources have contributed the specified effort. So the duration of the task
will depend on the availability of the resources.
WARNING: In almost all real world projects effort is not the product of
time and resources. This is only true if the task can be partitioned without
adding any overhead. For more information about this read "The Mythical
Man-Month" by Frederick P. Brooks, Jr.

Tasks may not have subtasks if this attribute is used.

Attributes Name Type Description

value REAL
unit UNIT

Context task,

Inheritable No Scenario Spec. Yes

See also duration, length

project duration "Duration Example" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"

task t "Enclosing" {
start 2005-06-06
task durationTask "Duration Task" {
This task is 10 calendar days long.
duration 10d

}

task intervalTask "Interval Task" {
This task is similar to the durationTask. Instead of a start
date and a duration it has a fixed start and end date.
end 2005-06-17
}

task lengthTask "Length Task" {
This task 10 working days long. So about 12 calendar days.
length 10d

}

task effortTask "Effort Task" {
effort 10d
allocate tux

}

74

Chapter 7. Property Reference

}

7.29. end <date>

end <date>
Description Specifies the end date of the report. In task reports only tasks that start before

this end date are listed.

Attributes Name Type Description

date DATE

Context csvaccountreport, csvresourcereport, csvtaskreport, export,
htmlaccountreport, htmlresourcereport, htmlstatusreport, htmltaskreport,
htmlweeklycalendar, resourcereport, taskreport,

Inheritable No Scenario Spec. No

See also start

project prj "Project" "1.0" 2000-01-01 2000-03-01

resource r "Resource"

task t "Task" {
start 2000-01-01
effort 10d
allocate r

}

Export the project as fully scheduled project.
export "FullProject.tjp" {
taskattributes all
hideresource 0

}

Export only bookings for 1st week as resource supplements
export "Week1Bookings.tji" {
properties bookings
start 2000-01-01
end 2000-01-08

}

75

Chapter 7. Property Reference

7.30. end <date>

end <date>
Description The end date of the task. This attributes also implicitely sets the scheduling

policy of the tasks to alap.

Attributes Name Type Description

date DATE

Context task,

Inheritable Yes Scenario Spec. Yes

See also start, maxend, minend, scheduling, endbuffer

project duration "Duration Example" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"

task t "Enclosing" {
start 2005-06-06
task durationTask "Duration Task" {
This task is 10 calendar days long.
duration 10d

}

task intervalTask "Interval Task" {
This task is similar to the durationTask. Instead of a start
date and a duration it has a fixed start and end date.
end 2005-06-17
}

task lengthTask "Length Task" {
This task 10 working days long. So about 12 calendar days.
length 10d

}

task effortTask "Effort Task" {
effort 10d
allocate tux

}
}

76

Chapter 7. Property Reference

7.31. endbuffer <percent>

endbuffer <percent>
Description Specifies how much slack time you expect to have at the end of the task. This

has no impact on the scheduling of the process. This information is for
documentation purposes only.

Attributes Name Type Description

percent REAL Percent slack of the
overall effort, duration
or length of the task.

Context task,

Inheritable No Scenario Spec. Yes

See also duration, effort, length, startbuffer

project simple "Simple Project" "$Id" 2000-01-01 2000-01-20

resource tux1 "Tux1"

task t1 "Task1" {
start 2000-01-01
length 10d
20% of the working time of this task are marked as buffer at the
beginning.
startbuffer 20
An additional 10% of the working time of this task are marked as
buffer at the end.
endbuffer 10.0
allocate tux1

}

Generate a report that lists the start end end dates for the
buffers.
htmltaskreport "Buffer.html" {
columns no, name, start, startbufferend, endbufferstart, end,
startbuffer, endbuffer, duration, effort, daily
hideresource 0

}

77

Chapter 7. Property Reference

7.32. endcredit <amount>

endcredit <amount>
Description Specifies an amount that is credited to the account specified by the account

property at the moment the tasks ends.

Attributes Name Type Description

amount REAL

Context task,

Inheritable No Scenario Spec. Yes

See also startcredit

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26 {
currency "USD"

}

account project_cost "Project Costs" cost
account payments "Customer Payments" revenue {
credit 2005-06-08 "Customer down payment" 500.0

}

resource tux "Tux" {
rate 300

}

task items "Project breakdown" {
start 2005-06-06
The default account for all tasks
account project_cost

task plan "Plan work" {
Some upfront material cost
startcredit 500.0
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

78

Chapter 7. Property Reference

account payments
Customer pays at end of acceptance
endcredit 2000.0

}
}

htmlaccountreport "PAndL.html" {
timeformat "%d-%M-%y"
accumulate
columns index, name, weekly

}

7.33. export <filename>

export <filename>
Description The export report looks like a regular taskjuggler file but contains fixed start

and end dates for all tasks. The tasks only have start and end times, their
description and their project id listed. No other attributes are exported unless
they are requested using the taskattributes attribute. The contense also
depends on the extension of the file name. If the file name ends with .tjp a
complete project with header, resource and shift definitions is generated. In
case it ends with .tji only the tasks and resource allocations are exported.
If specified the resource usage for the tasks is reported as well. But only
those allocations are listed that belong to tasks listed in the same export
report.

The export report can be used to share certain tasks or milestones with other
projects. When an export report is included the project IDs of the included
tasks must be declared first with the project id property.

Attributes Name Type Description

filename STRING

Optional Attributes end, hideresource, hidetask, properties, rollupresrouce, rolluptask, scenarios,
start, taskattributes, taskroot

Context The TJP File,

Inheritable No Scenario Spec. No

See also include

79

Chapter 7. Property Reference

project prj "Project" "1.0" 2000-01-01 2000-03-01

resource r "Resource"

task t "Task" {
start 2000-01-01
effort 10d
allocate r

}

Export the project as fully scheduled project.
export "FullProject.tjp" {
taskattributes all
hideresource 0

}

Export only bookings for 1st week as resource supplements
export "Week1Bookings.tji" {
properties bookings
start 2000-01-01
end 2000-01-08

}

7.34. extend <property>

extend <property>
Description Often it is desireable to collect more information in the project file than is

necessary for task scheduling and resource allocation. To add such
information to tasks, resources or accounts the user can extend these
properties with user-defined attributes. The new attributes can be text or
reference attributes. Optionally the user can specify if the attribute value
should be inherited from the enclosing property.

Attributes Name Type Description

property ID Possible values are
task, resource or
account

Context project,

Inheritable No Scenario Spec. No

<type> <id> <name>

80

Chapter 7. Property Reference

type: Specifies the type of the user-defined attribute. text is a simple text attribute. reference is an URL to another document.
id: An user-defined ID that is unique within the used-defined task attributes. To avoid conflicts with future built-in attributes, all user defined attributes must start with a capital letter.
name: A short description of the attribute. It will be used as default column header in reports.

project ca "Custom Attributes" "1.0" 2003-05-28 2003-06-28 {
extend task {
reference MyLink "My Link"
text MyText "My Text"

}
}

task t "Task" {
start 2003-05-28
milestone
MyLink "http://www.taskjuggler.org" { label "TJ Web" }
MyText "TaskJuggler is great!"

}

7.35. flags <flag> [, <flag> ...]

flags <flag> [, <flag> ...]
Description Attach a set of flags. The flags can be used in logical expressions to filter

properties from the reports.

Attributes Name Type Description

flag ID

Context resource, task,

Inheritable Yes Scenario Spec. No

See also flags

project prj "Flags Example" "1.0" 2005-07-21 2005-08-26

Declare the flag to mark important tasks
flags important

task items "Project breakdown" {
start 2005-07-22

task plan "Plan work" {

81

Chapter 7. Property Reference

length 3d
flags important

}

task implementation "Implement work" {
length 5d
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation
flags important

}
}

taskreport "My Tasks" {
Show only the important tasks
hidetask ~important
Turn treemode off so parent tasks are not automatically included.
sorttasks nameup

}

7.36. flags <flag> [, <flag> ...]

flags <flag> [, <flag> ...]
Description Declare a set of flags for later use.

Attributes Name Type Description

flag ID

Context The TJP File,

Inheritable No Scenario Spec. No

See also flags

project prj "Flags Example" "1.0" 2005-07-21 2005-08-26

Declare the flag to mark important tasks
flags important

task items "Project breakdown" {

82

Chapter 7. Property Reference

start 2005-07-22

task plan "Plan work" {
length 3d
flags important

}

task implementation "Implement work" {
length 5d
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation
flags important

}
}

taskreport "My Tasks" {
Show only the important tasks
hidetask ~important
Turn treemode off so parent tasks are not automatically included.
sorttasks nameup

}

7.37. gapduration <value> <unit>

gapduration <value> <unit>
Description Specifies the mininum required gap between the end of a preceding task and

the start of this task, or the start of a following task and the end of this task.
This is calender time, not working time. 7d means one week.

Attributes Name Type Description

value REAL
unit UNIT

Context depends, precedes,

Inheritable Yes Scenario Spec. Yes

See also duration, gaplength

83

Chapter 7. Property Reference

project prj "Example Project" "1.0" 2005-05-29 2005-07-01

task t1 "Task 1" {
start 2005-05-29

}

task t2 "Task 2" {
starts 5 calendar days after t1
depends !t1 { gapduration 5d }

}

task t3 "Task 3" {
starts 5 working days after t1
depends !t1 { gaplength 5d }

}

7.38. gaplength <value> <unit>

gaplength <value> <unit>
Description Specifies the minimum required gap between the end of a preceding task and

the start of this task, or the start of a following task and the end of this task.
This is working time, not calender time. 7d means 7 working days, not one
week. Whether a day is considered a working day or not depends on the
defined working hours and global vacations.

Attributes Name Type Description

value REAL
unit UNIT

Context depends, precedes,

Inheritable Yes Scenario Spec. Yes

See also gapduration, length

project prj "Example Project" "1.0" 2005-05-29 2005-07-01

task t1 "Task 1" {
start 2005-05-29

}

task t2 "Task 2" {
starts 5 calendar days after t1
depends !t1 { gapduration 5d }

84

Chapter 7. Property Reference

}

task t3 "Task 3" {
starts 5 working days after t1
depends !t1 { gaplength 5d }

}

7.39. headline <text>

headline <text>
Description Specifies the headline for a report.

Attributes Name Type Description

text STRING

Context htmlaccountreport, htmlresourcereport, htmlstatusreport, htmltaskreport,
htmlweeklycalendar, resourcereport, taskreport,

Inheritable No Scenario Spec. No

See also caption, copyright

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26

copyright "Bucks Beavis Inc."

resource tux "Tux"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

85

Chapter 7. Property Reference

}
}

htmltaskreport "ProjectBreakdown.html" {
caption "This is the project breakdown"
headline "Project Breakdown"
columns name, start, end, daily
Don’t hide any resource, meaning show them all.
hideresource 0

}

7.40. hideaccount <logicalexpression>

hideaccount <logicalexpression>
Description Do not show accounts that match the specified logical expression. If the

report is sorted in tree mode (default) then enclosing accounts are listed even
if the expression matches the account.

Attributes Name Type Description

logicalexpression LOGICALEXPRESSION

Context csvaccountreport, htmlaccountreport,

Inheritable No Scenario Spec. No

7.41. hidecelltext <expression>

hidecelltext <expression>
Description If the expression is true, the cell will be empty.

Attributes Name Type Description

expression LOGICALEXPRESSION

Context columns,

Inheritable No Scenario Spec. No

See also hidecellurl

86

Chapter 7. Property Reference

project prj "Project" "1.0" 2005-01-01 2005-03-01

resource r "Resource"

task t "Task" {
task s "SubTask" {
start 2005-01-01
effort 5d
allocate r

}
}

Just a very basic report with some standard columns
htmltaskreport "SimpleReport.html" {
columns hierarchindex, name, start, end, weekly

}

Report with custom colum title
htmltaskreport "CustomTitle.html" {
columns hierarchindex, name { title "Work Item" }, effort

}

Report with custom colum title and subtitle
htmltaskreport "CustomSubTitle.html" {
columns hierarchindex, name,

monthly { title " " subtitle "$${month} $${year}" }
loadunit days

}

Report with efforts only for leaf tasks
htmltaskreport "LeafEfforts.html" {
columns hierarchindex, name,

effort { hidecelltext ~isLeaf() }
}

Report with link in title of calendar
htmltaskreport "LinkURL.html" {
columns hierarchindex, name,

monthly { subtitleurl "Monthly-Detail-$${month}.html" }
}

Report with link to page with furter task details
htmltaskreport "LinkToTaskDetails.html" {
columns hierarchindex,

name { cellurl "TaskDetails-$${taskid}.html"
hidecellurl ~isLeaf() }, start, end

}

Report with index and task name combined in one single column

87

Chapter 7. Property Reference

htmltaskreport "CombinedColumn.html" {
columns name { celltext "$${hierarchno} $${0}"}, start, end, weekly

}

7.42. hidecellurl <expression>

hidecellurl <expression>
Description If the expression is true, no URL will be attached to the cell contense.

Attributes Name Type Description

expression LOGICALEXPRESSION

Context columns,

Inheritable No Scenario Spec. No

See also hidecelltext

project prj "Project" "1.0" 2005-01-01 2005-03-01

resource r "Resource"

task t "Task" {
task s "SubTask" {
start 2005-01-01
effort 5d
allocate r

}
}

Just a very basic report with some standard columns
htmltaskreport "SimpleReport.html" {
columns hierarchindex, name, start, end, weekly

}

Report with custom colum title
htmltaskreport "CustomTitle.html" {
columns hierarchindex, name { title "Work Item" }, effort

}

Report with custom colum title and subtitle
htmltaskreport "CustomSubTitle.html" {

88

Chapter 7. Property Reference

columns hierarchindex, name,
monthly { title " " subtitle "$${month} $${year}" }

loadunit days
}

Report with efforts only for leaf tasks
htmltaskreport "LeafEfforts.html" {
columns hierarchindex, name,

effort { hidecelltext ~isLeaf() }
}

Report with link in title of calendar
htmltaskreport "LinkURL.html" {
columns hierarchindex, name,

monthly { subtitleurl "Monthly-Detail-$${month}.html" }
}

Report with link to page with furter task details
htmltaskreport "LinkToTaskDetails.html" {
columns hierarchindex,

name { cellurl "TaskDetails-$${taskid}.html"
hidecellurl ~isLeaf() }, start, end

}

Report with index and task name combined in one single column
htmltaskreport "CombinedColumn.html" {
columns name { celltext "$${hierarchno} $${0}"}, start, end, weekly

}

7.43. hideresource <logicalexpression>

hideresource <logicalexpression>
Description Do not show resources that match the specified logical expression. If the

report is sorted in tree mode (default) then enclosing resources are listed even
if the expression matches the resource.

Attributes Name Type Description

logicalexpression LOGICALEXPRESSION

Context csvresourcereport, export, htmlresourcereport, htmltaskreport,
htmlweeklycalendar, icalreport, resourcereport, taskreport, xmlreport,

Inheritable No Scenario Spec. No

89

Chapter 7. Property Reference

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26

copyright "Bucks Beavis Inc."

resource tux "Tux"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

htmltaskreport "ProjectBreakdown.html" {
caption "This is the project breakdown"
headline "Project Breakdown"
columns name, start, end, daily
Don’t hide any resource, meaning show them all.
hideresource 0

}

7.44. hidetask <logicalexpression>

hidetask <logicalexpression>
Description Do not show tasks that match the specified logical expression. If the report is

sorted in tree mode (default) then enclosing tasks are listed even if the
expression matches the task.

Attributes Name Type Description

logicalexpression LOGICALEXPRESSION

90

Chapter 7. Property Reference

hidetask <logicalexpression>
Context csvtaskreport, export, htmlresourcereport, htmltaskreport,

htmlweeklycalendar, icalreport, resourcereport, taskreport, xmlreport,

Inheritable No Scenario Spec. No

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"
resource tuxia "Tuxia"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
task phase1 "Phase 1" {
effort 5d
allocate tuxia

}
task phase2 "Phase 2" {
effort 2d
allocate tux

}
}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

taskreport "Project Breakdown" {
columns start, end, effort
Open only the first level of tasks
rolluptask treelevel() > 1

}

resourcereport "Resource Allocations" {
columns id, effort
We only want to see the tasks with real work (without parents),
sorted by name
sorttasks nameup
hidetask ~isleaf()

}

91

Chapter 7. Property Reference

7.45. htmlaccountreport <file>

htmlaccountreport <file>
Description The report lists all specified account values as a HTML page.

Attributes Name Type Description

file STRING

Optional Attributes accumulate, caption, columns, end, headline, hideaccount, rawhead,
rawstylesheet, rawtail, rollupaccount, scenarios, shorttimeformat,
sortaccounts, start, timeformat

Context The TJP File,

Inheritable No Scenario Spec. No

See also csvaccountreport, htmlresourcereport, htmltaskreport

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26 {
currency "USD"

}

account project_cost "Project Costs" cost
account payments "Customer Payments" revenue {
credit 2005-06-08 "Customer down payment" 500.0

}

resource tux "Tux" {
rate 300

}

task items "Project breakdown" {
start 2005-06-06
The default account for all tasks
account project_cost

task plan "Plan work" {
Some upfront material cost
startcredit 500.0
length 3d

}

task implementation "Implement work" {

92

Chapter 7. Property Reference

effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation
account payments
Customer pays at end of acceptance
endcredit 2000.0

}
}

htmlaccountreport "PAndL.html" {
timeformat "%d-%M-%y"
accumulate
columns index, name, weekly

}

7.46. htmlresourcereport <file>

htmlresourcereport <file>
Description The report lists all resources and their respective values as a HTML page.

The tasks that the resources are allocated to can be listed as well.

Attributes Name Type Description

file STRING

Optional Attributes accumulate, barlabels, caption, columns, end, headline, hideresource,
hidetask, loadunit, rawhead, rawstylesheet, rawtail, rollupresrouce,
rolluptask, scenarios, shorttimeformat, showprojectids, sortresources,
sorttasks, start, timeformat

Context The TJP File,

Inheritable No Scenario Spec. No

See also csvresourcereport, htmlaccountreport, htmltaskreport, resourcereport

93

Chapter 7. Property Reference

7.47. htmlstatusreport <file>

htmlstatusreport <file>
Description Generates a HTML status report. The report consits of 4 tables: Overdue

tasks, ongoing tasks, finished tasks and upcoming tasks. The default
reporting interval is 1 week.

Attributes Name Type Description

file STRING

Optional Attributes scenarios, start, end, headline, caption, rawhead, rawstylesheet, rawtail,
loadunit, timeformat, shorttimeformat

Context The TJP File,

Inheritable No Scenario Spec. No

See also htmlaccountreport, htmlresourcereport, htmltaskreport, htmlweeklycalendar

7.48. htmltaskreport <file>

htmltaskreport <file>
Description The report lists all tasks and their respective values as a HTML page. The

resources that are allocated to the tasks can be listed as well.

Attributes Name Type Description

file STRING

Optional Attributes accumulate, barlabels, caption, columns, end, headline, hideresource,
hidetask, loadunit, rawhead, rawstylesheet, rawtail, rollupresrouce,
rolluptask, scenarios, shorttimeformat, showprojectids, sortresources,
sorttasks, start, timeformat

Context The TJP File,

Inheritable No Scenario Spec. No

See also csvtaskreport, htmlaccountreport, htmlresourcereport, taskreport

7.49. htmlweeklycalendar <file>

94

Chapter 7. Property Reference

htmlweeklycalendar <file>
Description Generates a calendar like HTML report.

Attributes Name Type Description

file STRING

Optional Attributes accumulate, barlabels, caption, columns, end, headline, hideresource,
hidetask, loadunit, rawhead, rawstylesheet, rawtail, rollupresrouce,
rolluptask, scenarios, shorttimeformat, showprojectids, sortresources,
sorttasks, start, timeformat

Context The TJP File,

Inheritable No Scenario Spec. No

See also htmlaccountreport, htmlresourcereport, htmltaskreport, htmlstatusreport

7.50. icalreport <file>

icalreport <file>
Description Generates an ICal report accoring to RFC2445. This is standardized format

used by many calendar applications such as KOrganizer. The filename should
have a .ics extension.

Attributes Name Type Description

file STRING

Optional Attributes hideresource, hidetask, rollupresrouce, rolluptask, scenarios

Context
Inheritable No Scenario Spec. No

project prj "ICal Export Demo" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"
resource tuxia "Tuxia"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
task phase1 "Phase 1" {
effort 5d
allocate tuxia

95

Chapter 7. Property Reference

}
task phase2 "Phase 2" {
effort 2d
allocate tux

}
}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

icalreport "Tux-TODO-List.ics" {
Only export tasks that tux is assigned to
hidetask ~isDutyOf(tux, plan)

}

7.51. include <file>

include <file>
Description Includes the specified file name as if its contents would be written instead of

the include property. include commands can be used within global scope
or between property declarations of tasks, resources, and accounts.
For technical reasons you have to supply the optional pair of curly brackets
if the include is followed immediately by a macro that is defined within the
included file.

Attributes Name Type Description

file STRING

Optional Attributes taskprefix

Context The TJP File, project,

Inheritable No Scenario Spec. No

See also export

96

Chapter 7. Property Reference

project yourId "Your Project" "1.0" 2005-04-05 2005-05-01

task main "Main task" {
}

include "Include2.tji" { taskprefix main }

7.52. journalentry <date> <text>

journalentry <date> <text>
Description Journal entries are meant for documentation purposes. They consist of a date

and a text entry. Each journal entry adds a new entry to the journal of the
property.

Attributes Name Type Description

date DATE
text STRING

Context project, resource, task,

Inheritable No Scenario Spec. No

See also note, statusnote

project journal "Project" "$Id" 2000-01-01 2000-01-04 {
journalentry 2000-01-02 "The project started."
journalentry 2000-01-03 "We made some progress."

}

resource tux "Tux" {
journalentry 2000-01-02 "This guy is a bummer."

}

task t1 "Task1" {
journalentry 2000-01-01 "Probably will be done sooner."
journalentry 2000-01-03 "Maybe not."
start 2000-01-01
milestone

}

97

Chapter 7. Property Reference

7.53. kotrusid <id>

kotrusid <id>
Description The KoTrus ID of the account (cost object). This is a special reserved

keyword.

Attributes Name Type Description

id STRING

Context account, resource,

Inheritable Yes Scenario Spec. No

7.54. label <text>

label <text>
Description Specifies the text for the URL in HTML reports. If no label is specified, the

URL will be displayed. If a label has been specified, the URL will not be
shown.

Attributes Name Type Description

text STRING

Context reference,

Inheritable No Scenario Spec. No

project ca "Custom Attributes" "1.0" 2003-05-28 2003-06-28 {
extend task {
reference MyLink "My Link"
text MyText "My Text"

}
}

task t "Task" {
start 2003-05-28
milestone
MyLink "http://www.taskjuggler.org" { label "TJ Web" }
MyText "TaskJuggler is great!"

}

98

Chapter 7. Property Reference

7.55. length <value> <unit>

length <value> <unit>
Description Specifies the time the task occupies the resources. This is working time, not

calender time. 7d means 7 working days, not one week. Whether a day is
considered a working day or not depends on the defined working hours and
global vacations. A task with a length specification may have resource
allocations. Resources are allocated when they are available. The
availability has no impact on the duration of the task. A day where none of
the specified resources is available is still considered a working day, if there
is no global vacation of or global working time defined.
Tasks may not have subtasks if this attribute is used.

Attributes Name Type Description

value REAL
unit UNIT

Context task,

Inheritable No Scenario Spec. Yes

See also duration, effort

project duration "Duration Example" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"

task t "Enclosing" {
start 2005-06-06
task durationTask "Duration Task" {
This task is 10 calendar days long.
duration 10d

}

task intervalTask "Interval Task" {
This task is similar to the durationTask. Instead of a start
date and a duration it has a fixed start and end date.
end 2005-06-17
}

task lengthTask "Length Task" {
This task 10 working days long. So about 12 calendar days.

99

Chapter 7. Property Reference

length 10d
}

task effortTask "Effort Task" {
effort 10d
allocate tux

}
}

7.56. limits

limits
Description Specifies limits on the usage of a resource in general, or of the allocation of

a resource to a task. This property replaces the less flexible properties
maxeffort and load.
When applied to an allocation this limits the use of all alternative resources
or group memembers as a whole. There has been a bug in version 2.0.x that
resulted in faulty limit computation. This has been fixed with version 2.1.

Optional Attributes dailymax, weeklymax, monthlymax

Context The TJP File, allocate, resource,

Inheritable Yes Scenario Spec. No

project limits "Limits" "1.0" 2004-03-01 2004-05-01

Default limit that affects all subsequently defined resources
limits {
weeklymax 4d

}

resource r1 "R1" {
Limit the usage of this resource to a maximum of 2 hours per day,
6 hours per week and 2.5 days per month.
limits { dailymax 2h weeklymax 6h monthlymax 2.5d }

}

resource r2 "R2"

task t1 "Task 1" {
start 2004-03-01
duration 60d

100

Chapter 7. Property Reference

allocation is subject to resource limits
allocate r1

}

task t2 "Task 2" {
start 2004-03-01
duration 60d
limits can also be specified per allocation
allocate r2 {
limits { dailymax 4h weeklymax 3d monthlymax 2w }

}
}

7.57. load <factor>

load <factor>
Description This property has been replaced by limits. The further usage of load is

strongly discouraged. It will be dropped from future versions of
TaskJuggler.
Specifies the daily load of a resource for an allocation. A load of 1.0
(default) means the resource is allocated for as many hours as specified by
dailyworkinghours. A load of 0.5 means half that many hours. This only
works if enough working hours have been specified for the particular day.

Attributes Name Type Description

factor REAL

Context
Inheritable No Scenario Spec. No

See also workinghours, vacation

7.58. loadunit <unit>

loadunit <unit>
Description Specifies the unit in which loads are reported in a report.

Attributes Name Type Description

101

Chapter 7. Property Reference

loadunit <unit>
unit ID See table below for

possible values.

Context htmlresourcereport, htmlstatusreport, htmltaskreport, htmlweeklycalendar,
resourcereport, taskreport,

Inheritable No Scenario Spec. No

See also dailyworkinghours, yearlyworkingdays

days Show load in man or resource-days.
hours Show load in man resource-hours.
longauto Show load in the most appropriate unit and show long unit name.
minutes Show load in man or resource-minutes.
months Show load in man or resource-months.
shortauto Show load in the most appropriate unit and show short unit name.
weeks Show load in man or resource-weeks.
years Show load in man or resource-years.

7.59. macro <id>

macro <id>
Description Defines a text fragment that can later be inserted by using the specified ID.

Attributes Name Type Description

id ID

Context The TJP File,

Inheritable No Scenario Spec. No

The body is not optional. It must be enclosed in []. Macros can be declared like this:

macro FOO [This text];

If later ${FOO} is found in the project file, it is expanded to ’ This text ’. Macros may have arguments.
Arguments are special macros with numbers as names. The number specifies the index of the argument.

macro FOO [This ${1} text]

102

Chapter 7. Property Reference

will expand to ’ This stupid text ’ if called as ${FOO "stupid"}. Macros may call other macros.

Macro IDs should have at least one uppercase letter as all lowercase letter IDs may be used in a later
version for built-in macros like ’if’, ’expr’ or ’for’. Macro names can be prefixed by a questionmark. In
this case the macro will expand to nothing if the macro is not defined. Otherwise the undefined macro
would be flagged with an error message.

This macro call ${?foo} will expand to nothing if foo is undefined.

7.60. mandatory

mandatory
Description Makes a resource allocation mandatory. This means, that for each time slot

only then resources are allocated when all mandatory resources are available.
So either all mandatory resources can be allocated for the time slot, or no
resource will be allocated.

Context allocate,

Inheritable No Scenario Spec. No

project prj "Project" "1.0" 2000-01-01 2000-03-01

resource tuxus "Tuxus"
resource truck "Truck" {
Truck does not do any work!
efficiency 0.0

}

task t "Ship stones to customers" {
start 2000-01-01
effort 5d
We need the truck to deliver the stones, so only allocate
tuxus when the truck is available.
allocate tuxus
allocate truck { mandatory }

}

103

Chapter 7. Property Reference

7.61. maxeffort <workingdays>

maxeffort <workingdays>
Description This property has been replaced by limits. The further usage of maxeffort is

strongly discouraged. It will be dropped from future versions of
TaskJuggler.
The daily maximum effort for a resource. Resources will not be scheduled
to be used more than this value. A value of 1.0 means a full working day.
0.5 means half a working day.

Attributes Name Type Description

workingdays REAL

Context The TJP File, resource,

Inheritable No Scenario Spec. No

See also dailyworkinghours, workinghours

7.62. maxend <date>

maxend <date>
Description Specifies the maximum wanted end time of the task. The value is not used

during scheduling, but is checked after all tasks have been scheduled. If the
end of the task is later than the specified value, then an error is reported.

Attributes Name Type Description

date DATE

Context task,

Inheritable Yes Scenario Spec. Yes

See also maxstart, minend, minstart

project minmax "Min Max Example" "1.0" 2005-06-06 2005-06-26

task items "Project breakdown" {

104

Chapter 7. Property Reference

start 2005-06-07

task plan "Plan work" {
Set acceptable interval for task start
minstart 2005-06-06
maxstart 2005-06-08
length 3d
Set acceptable interval for task end
minend 2005-06-09
maxend 2005-06-11

}
}

7.63. maxstart <date>

maxstart <date>
Description Specifies the maximum wanted start time of the task. The value is not used

during scheduling, but is checked after all tasks have been scheduled. If the
start of the task is later than the specified value, then an error is reported.

Attributes Name Type Description

date DATE

Context task,

Inheritable Yes Scenario Spec. Yes

See also maxend, minend, minstart

project minmax "Min Max Example" "1.0" 2005-06-06 2005-06-26

task items "Project breakdown" {
start 2005-06-07

task plan "Plan work" {
Set acceptable interval for task start
minstart 2005-06-06
maxstart 2005-06-08
length 3d
Set acceptable interval for task end
minend 2005-06-09
maxend 2005-06-11

}

105

Chapter 7. Property Reference

}

7.64. minend <date>

minend <date>
Description Specifies the minimum wanted end time of the task. The value is not used

during scheduling, but is checked after all tasks have been scheduled. If the
end of the task is earlier than the specified value, then an error is reported.

Attributes Name Type Description

date DATE

Context task,

Inheritable Yes Scenario Spec. Yes

See also maxend, maxstart, minstart

project minmax "Min Max Example" "1.0" 2005-06-06 2005-06-26

task items "Project breakdown" {
start 2005-06-07

task plan "Plan work" {
Set acceptable interval for task start
minstart 2005-06-06
maxstart 2005-06-08
length 3d
Set acceptable interval for task end
minend 2005-06-09
maxend 2005-06-11

}
}

7.65. minstart <date>

106

Chapter 7. Property Reference

minstart <date>
Description Specifies the minimum wanted start time of the task. The value is not used

during scheduling, but is checked after all tasks have been scheduled. If the
start of the task is earlier than the specified value, then an error is reported.

Attributes Name Type Description

date DATE

Context task,

Inheritable Yes Scenario Spec. Yes

See also maxend, maxstart, minend

project minmax "Min Max Example" "1.0" 2005-06-06 2005-06-26

task items "Project breakdown" {
start 2005-06-07

task plan "Plan work" {
Set acceptable interval for task start
minstart 2005-06-06
maxstart 2005-06-08
length 3d
Set acceptable interval for task end
minend 2005-06-09
maxend 2005-06-11

}
}

7.66. milestone

milestone
Description Turns the task into a special task that has no duration. You may not specify a

duration, length, effort or subtasks for a milestone task.
A task that only has a start or an end specification and no duration
specification or sub tasks, will be recognized as milestone automatically.

Context task,

Inheritable No Scenario Spec. No

107

Chapter 7. Property Reference

project prj "Milestone demo" "1.0" 2005-07-15 2005-08-01

task project_start "Project Start" {
start 2005-07-15
milestone

}

task deadline "Important Deadline" {
start 2005-07-20
A task with only a start or end date and no duration specification
is automatically assumed to be a milestone.

}

7.67. note <text>

note <text>
Description Attach a note to the task. This is usually a more detailed specification of what

the task is about.

Attributes Name Type Description

text STRING

Context task,

Inheritable No Scenario Spec. No

See also journalentry, statusnote

7.68. monthlymax <value> <unit>

monthlymax <value> <unit>
Description Sets the monthly limit of a resource usage or a resource allocation to a task.

Attributes Name Type Description

value REAL
unit UNIT

Context limits,

Inheritable Yes Scenario Spec. No

See also dailymax, weeklymax

108

Chapter 7. Property Reference

project limits "Limits" "1.0" 2004-03-01 2004-05-01

Default limit that affects all subsequently defined resources
limits {
weeklymax 4d

}

resource r1 "R1" {
Limit the usage of this resource to a maximum of 2 hours per day,
6 hours per week and 2.5 days per month.
limits { dailymax 2h weeklymax 6h monthlymax 2.5d }

}

resource r2 "R2"

task t1 "Task 1" {
start 2004-03-01
duration 60d
allocation is subject to resource limits
allocate r1

}

task t2 "Task 2" {
start 2004-03-01
duration 60d
limits can also be specified per allocation
allocate r2 {
limits { dailymax 4h weeklymax 3d monthlymax 2w }

}
}

7.69. now <date>

now <date>
Description Specify the date that TaskJuggler uses for calculation as current date. If no

value is specified, the current value of the system clock is used.

Attributes Name Type Description

date DATE

Context project,

Inheritable Yes Scenario Spec. No

109

Chapter 7. Property Reference

project simple "Some task" "1.0" 2005-06-06 2005-06-26 {
now 2005-06-15

}

resource tux "Tux"

task t "Task" {
start 2005-06-06
effort 10d
allocate tux
This task should have be be completed much more on Jun 15, but
it’s only 20% done.
complete 20

}

7.70. numberformat <negativeprefix>
<negativesuffix> <thousandseparator>
<fractionseparator> <fractiondigits>

numberformat <negativeprefix> <negativesuffix> <thousandseparator>
<fractionseparator> <fractiondigits>
Description These values specify the default format used for all numerical real values.

The negativeprefix and negativesuffix strings enclose negative
currency values. The thousandseparator can be used to make large
numbers more readable. The fractionseparator separates the fractional
part from the rest. fractiondigits specifies how many fractional digits
should be shown at a maximum.

Attributes Name Type Description

negativeprefix STRING
negativesuffix STRING
thousandseparator STRING
fractionseparator STRING
fractiondigits INTEGER

Context project,

Inheritable Yes Scenario Spec. No

110

Chapter 7. Property Reference

project prj "Project" "1.0" 2000-01-01 2000-03-01 {
German number format: e. g. -10000,20 5014,11
numberformat "-" "" "" "," 2

US currency format: e. g. (10,000.20) 5,014.11
currencyformat "(" ")" "," "." 2

}

task t "Task" {
start 2000-01-01
milestone

}

7.71. persistent

persistent
Description Specifies that once a resource is picked from the list of alternatives this

resource is used for the whole task. This is usefull when several alternative
resources have been specified. Normaly the selected resource can change
after each break. A break is an interval of at least one timeslot where no
resources were available.

Context allocate,

Inheritable No Scenario Spec. No

See also alternative

project prj "Project" "1.0" 2003-06-05 2003-07-05

resource r1 "Resource 1"
resource r2 "Resource 2"

task t1 "Task 1" {
start 2003-06-05
effort 5d
Pick one of them and use it for the entire task
allocate r1 { alternative r2 persistent }

}

111

Chapter 7. Property Reference

7.72. priority <value>

priority <value>
Description Specifies a priority between 1 and 1000. A task with higher priority is more

likely to get the requested resources.
This attribute is inherited by subtasks if specified prior to the definition of
the subtask.

Attributes Name Type Description

value INTEGER

Context The TJP File, task,

Inheritable No Scenario Spec. No

project prj "Priority Demo" "1.0" 2005-07-15 2005-10-01

resource tux "Tux"

task items "Project breakdown" {
start 2005-07-15

task coolStuff "Do some cool stuff" {
start 2005-08-01
effort 10d
priority 800
allocate tux

}

task otherStuff "Other not so important stuff" {
start 2005-08-01
effort 20d
priority 500
allocate tux

}

task maintenance "Maintenance work" {
This is a fallback task. Whenever tux is not doing something
else he is allocated to this task.
duration 2m
priority 300
allocate tux

}
}

112

Chapter 7. Property Reference

7.73. precedes <task> [, <task> ...]

precedes <task> [, <task> ...]
Description Specifies that the tasks with the specified IDs cannot start before the task

has been finished. If multiple IDs are specified, they must be separated by
commas. IDs must be either global or relative. A relative ID starts with a
number of ’!’. Each ’!’ moves the scope to the parent task. Global IDs do
not contain ’!’, but have IDs separated by dots.
By using the ’precedes’ attribute, the scheduling policy is automatically set
to alap. If both ’precedes’ and ’precedes’ are used within a task, the last
policy counts.

Attributes Name Type Description

task ID

Optional Attributes gapduration, gaplength

Context task,

Inheritable No Scenario Spec. No

See also depends, scheduling

project p "P" "1.0" 2003-11-09 2003-12-24

task foo1 "foo1" {
task foo2 "foo2" {
start 2003-12-04
milestone

}
task foo3 "foo3" {
precedes !foo2
length 1d

}
}
task bar "bar" {
precedes foo1.foo2
length 2d

}

113

Chapter 7. Property Reference

7.74. project <id> <name> <version> <start> <end>

project <id> <name> <version> <start> <end>
Description The project property is mandatory and should be the first property in a

project file. <id> is the default project ID used to register resource allocations
in a global database. <name> is the name of the project. <version> is the
version of the project file. Typically this is the CVS ID. <start> and <end>
define the time frame of the project. The end may be well after the end of the
last task, but must be specified to terminate the scheduling process.

Attributes Name Type Description

id ID The default project ID.
name STRING The name of the project.

version STRING The version of the
project file. This could
be a revision number
from a revision control
system.

start DATE All task must start after
this date.

end DATE All task must end before
this date.

Optional Attributes allowredefinition, currencyformat, currency, dailyworkinghours, extend,
include, journalentry, now, numberformat, scenario, shorttimeformat,
timeformat, timezone, timingresolution, weekstartsmonday,
weekstartssunday, workinghours, yearlyworkingdays

Context The TJP File,

Inheritable No Scenario Spec. No

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
length 3d

}

task implementation "Implement work" {

114

Chapter 7. Property Reference

effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

taskreport "My Tasks"

7.75. projectid <id>

projectid <id>
Description At global scope it declares a new project id and activates it. All subsequent

task definitions will inherit this ID. If used within a task it simply assigns this
project ID to the task. The tasks of a project can have different IDs. This is
particularly helpful if the project is merged from several sub projects that
each have their own ID.

Attributes Name Type Description

id ID

Context The TJP File, task,

Inheritable Yes Scenario Spec. No

See also project, projectids

7.76. projectids <projectid> [, <projectid> ...]

projectids <projectid> [, <projectid> ...]
Description Declares a list of project IDs.

Attributes Name Type Description

projectid ID

Context The TJP File,

115

Chapter 7. Property Reference

projectids <projectid> [, <projectid> ...]
Inheritable No Scenario Spec. No

See also project, projectid

7.77. projection

projection
Description Enables the projection mode for the scenario. All tasks will be scheduled

taking the manual bookings into account. The tasks will be extended after the
last manual bookings until the specified effort, length or duration has been
reached.

Context scenario,

Inheritable No Scenario Spec. No

See also booking

project prj "Project" "1.0" 2003-06-05 2003-07-05 {
The baseline date for the projection.
now 2003-06-15
scenario plan "Plan" {
Compute when the task will be ready based on the already done
work and the current date.
projection

}
}

resource r1 "Resource 1"

task t1 "Task 1" {
start 2003-06-05
effort 10d
allocate r1

}

supplement resource r1 {
This is the work that has been done up until now by r1.
booking 2003-06-06 2003-06-07 t1 { sloppy 2 }
booking 2003-06-08 2003-06-09 t1 { sloppy 2 }
booking 2003-06-11 2003-06-12 t1 { sloppy 2 }

}

116

Chapter 7. Property Reference

7.78. properties <property> [, <property> ...]

properties <property> [, <property> ...]
Description This attribute determines which properties will be included in the report.

Attributes Name Type Description

property ID See table below for
possible values.

Context export,

Inheritable No Scenario Spec. No

all Include all properties.
bookings Include all bookings for the report interval. Only bookings for non-filtered resources will be included.
shifts Include all shift definitions.
tasks Include all task definitions for non-filtered tasks.
resources Include all resource definitions for non-filtered resources.

project prj "Project" "1.0" 2000-01-01 2000-03-01

resource r "Resource"

task t "Task" {
start 2000-01-01
effort 10d
allocate r

}

Export the project as fully scheduled project.
export "FullProject.tjp" {
taskattributes all
hideresource 0

}

Export only bookings for 1st week as resource supplements
export "Week1Bookings.tji" {
properties bookings
start 2000-01-01
end 2000-01-08

}

117

Chapter 7. Property Reference

7.79. rate <value>

rate <value>
Description Specifies the daily costs of the resource. The amount are credited to the

account specified with the task that makes use of the resource.

Attributes Name Type Description

value REAL

Context The TJP File, resource,

Inheritable Yes Scenario Spec. No

See also account, task

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26 {
currency "USD"

}

account project_cost "Project Costs" cost
account payments "Customer Payments" revenue {
credit 2005-06-08 "Customer down payment" 500.0

}

resource tux "Tux" {
rate 300

}

task items "Project breakdown" {
start 2005-06-06
The default account for all tasks
account project_cost

task plan "Plan work" {
Some upfront material cost
startcredit 500.0
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

118

Chapter 7. Property Reference

account payments
Customer pays at end of acceptance
endcredit 2000.0

}
}

htmlaccountreport "PAndL.html" {
timeformat "%d-%M-%y"
accumulate
columns index, name, weekly

}

7.80. rawhead <html>

rawhead <html>
Description Specifies a section of raw HTML code that will be inserted at the top of the

report.

Attributes Name Type Description

html STRING

Context htmlaccountreport, htmlresourcereport, htmlstatusreport, htmltaskreport,
htmlweeklycalendar,

Inheritable No Scenario Spec. No

See also rawstylesheet, rawtail

7.81. rawstylesheet <stylesheet>

rawstylesheet <stylesheet>
Description Specifies a stylesheet for HTML reports.

Attributes Name Type Description

stylesheet STRING

Context htmlaccountreport, htmlresourcereport, htmlstatusreport, htmltaskreport,
htmlweeklycalendar,

Inheritable No Scenario Spec. No

119

Chapter 7. Property Reference

7.82. rawtail <html>

rawtail <html>
Description Specifies a section of raw HTML code that will be inserted at the bottom of

the report.

Attributes Name Type Description

html STRING

Context htmlaccountreport, htmlresourcereport, htmlstatusreport, htmltaskreport,
htmlweeklycalendar,

Inheritable No Scenario Spec. No

See also rawhead, rawstylesheet

7.83. reference <url>

reference <url>
Description A reference to an external document. If you need more than one reference,

you can create your own URL placeholders.

Attributes Name Type Description

url STRING Should be a well formed
URL.

Optional Attributes label

Context task,

Inheritable No Scenario Spec. No

See also extend

project ca "Custom Attributes" "1.0" 2003-05-28 2003-06-28 {
extend task {
reference MyLink "My Link"
text MyText "My Text"

}
}

120

Chapter 7. Property Reference

task t "Task" {
start 2003-05-28
milestone
MyLink "http://www.taskjuggler.org" { label "TJ Web" }
MyText "TaskJuggler is great!"

}

7.84. resource <id> <name>

resource <id> <name>
Description Task use resources to fullfill the specified efforts.

Attributes Name Type Description

id ID
name STRING

Optional Attributes booking, efficiency, flags, journalentry, kotrusid, maxeffort, limits, rate,
resource, shift, vacation, workinghours

Context The TJP File, resource,

Inheritable No Scenario Spec. No

See also task

project resources "Resource Examples" "1.0" 2005-06-06 2005-06-26

A simple resource
resource tux1 "Tux1"

A team
resource team "A team" {
A 2 days of team vacation
vacation 2005-06-07 - 2006-05-09
resource tux2 "Tux2"
resource tux3 "Tux3" {
And one extra day
vacation 2005-06-10

}
}

task t "An important date" {
start 2005-06-10

121

Chapter 7. Property Reference

}

7.85. resourcereport <file>

resourcereport <file>
Description This report is intended for the TaskJuggler graphical user interface. The

report lists all tasks and their respective values as a HTML page. The
resources that are allocated to the tasks can be listed as well.

Attributes Name Type Description

file STRING

Optional Attributes caption, columns, end, headline, hideresource, hidetask, loadunit,
rollupresrouce, rolluptask, scenario, shorttimeformat, showprojectids,
sortresources, sorttasks, start, timeformat

Context
Inheritable No Scenario Spec. No

See also csvtaskreport, htmlaccountreport, htmlresourcereport, taskreport

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"
resource tuxia "Tuxia"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
task phase1 "Phase 1" {
effort 5d
allocate tuxia

}
task phase2 "Phase 2" {
effort 2d
allocate tux

}
}

task implementation "Implement work" {
effort 5d

122

Chapter 7. Property Reference

allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

taskreport "Project Breakdown" {
columns start, end, effort
Open only the first level of tasks
rolluptask treelevel() > 1

}

resourcereport "Resource Allocations" {
columns id, effort
We only want to see the tasks with real work (without parents),
sorted by name
sorttasks nameup
hidetask ~isleaf()

}

7.86. responsible <resource>

responsible <resource>
Description The ID of the resource that is responsible for this task. This value is for

documenation purposes only. It’s not used by the scheduler.

Attributes Name Type Description

resource ID

Context task,

Inheritable Yes Scenario Spec. No

See also resource

project prj "Responsible Demo" "1.0" 2005-07-15 2005-08-01

resource tux "Tux"
resource ubertux "Uber Tux"

123

Chapter 7. Property Reference

task someJob "Some Job" {
start 2005-07-15
effort 1w
allocate tux
responsible ubertux

}

taskreport "Job List" {
columns effort, resources, responsible

}

7.87. rollupaccount <logicalexpression>

rollupaccount <logicalexpression>
Description Do not show sub-accounts of accounts that match the specified logical

expression.

Attributes Name Type Description

logicalexpression LOGICALEXPRESSION

Context csvaccountreport, htmlaccountreport,

Inheritable No Scenario Spec. No

See also rollupresrouce, rolluptask

7.88. rollupresrouce <logicalexpression>

rollupresrouce <logicalexpression>
Description Do not show sub-resources of resources that match the specified logical

expression.

Attributes Name Type Description

logicalexpression LOGICALEXPRESSION

124

Chapter 7. Property Reference

rollupresrouce <logicalexpression>
Context csvresourcereport, export, htmlresourcereport, htmltaskreport,

htmlweeklycalendar, icalreport, resourcereport, taskreport, xmlreport,

Inheritable No Scenario Spec. No

See also rollupaccount, rolluptask

7.89. rolluptask <logicalexpression>

rolluptask <logicalexpression>
Description Do not show sub-tasks of tasks that match the specified logical expression.

Attributes Name Type Description

logicalexpression LOGICALEXPRESSION

Context csvtaskreport, export, htmlresourcereport, htmltaskreport,
htmlweeklycalendar, icalreport, resourcereport, taskreport, xmlreport,

Inheritable No Scenario Spec. No

See also rollupaccount, rollupresrouce

7.90. scenario <id> <name>

scenario <id> <name>
Description Specifies the different project scenarios. A scenario that is nested into

another one inherits all values from the enclosing scenario except those
values that were specified specifically for this scenario. There can only be
one top-level scenario. It is usually called plan scenario. By default this
scenario is pre-defined but can be overwritten with any other scenario.

Attributes Name Type Description

id ID
name STRING

Optional Attributes disabled, projection, scenario

Context project, scenario,

Inheritable No Scenario Spec. No

125

Chapter 7. Property Reference

scenario <id> <name>
See also scenarios

project prj "Example" "1.0" 2005-05-29 2005-07-01 {
scenario plan "Planned Scenario" {
scenario actual "Actual Scenario"
scenario test "Test Scenario" {
disabled

}
}

}

task t "Task" {
start 2005-05-29
actual:start 2005-06-03
test:start 2005-06-07

}

7.91. scenario <scenarioid>

scenario <scenarioid>
Description ID of the scenario that should be included in the report.

Attributes Name Type Description

scenarioid ID The ID of the scenario.

Context resourcereport, taskreport,

Inheritable No Scenario Spec. No

See also scenario

7.92. scenarios <scenarioid> [, <scenarioid> ...]

scenarios <scenarioid> [, <scenarioid> ...]
Description List of scenarios that should be included in the report.

126

Chapter 7. Property Reference

scenarios <scenarioid> [, <scenarioid> ...]
Attributes Name Type Description

scenarioid ID The ID of the scenario.

Context export, htmlaccountreport, htmlresourcereport, htmlstatusreport,
htmltaskreport, htmlweeklycalendar, icalreport, xmlreport,

Inheritable No Scenario Spec. No

See also scenario

7.93. scheduled

scheduled
Description This is mostly for internal use. It specifies that the task can be ignored for

scheduling in the scenario.

Context task,

Inheritable No Scenario Spec. Yes

7.94. scheduling <type>

scheduling <type>

127

Chapter 7. Property Reference

scheduling <type>
Description Specifies the scheduling policy for the task. A task can be scheduled from

start to end (As Soon As Possible, asap) or from end to start (As Late As
Possible, alap).
A task can be scheduled from start to end (ASAP mode) when it has a hard
(start) or soft (depends) criteria for the start time. A task can be scheduled
from end to start (ALAP mode) when it has a hard (end) or soft (precedes)
criteria for the end time.

Some task attributes set the scheduling policy implicitely. This attribute can
be used to explicitely set the scheduling policy of the task to a certain
direction. To avoid it being overwritten again by an implicite attribute this
attribute should always be the last attribute of the task.

A random mixture of ASAP and ALAP tasks can have unexpected side
effects on the scheduling of the project. It increases significantly the
scheduling complexity and results in much longer scheduling times.
Especially in projects with many hundreds of tasks the scheduling time of a
project with a mixture of ASAP and ALAP times can be 2 to 10 times
longer. When the projects contains chains of ALAP and ASAP tasks the
tasks further down the dependency chain will be served much later than
other non-chained task even when they have a much higher priority. This
can result in situations where high priority tasks do not get their resources
even though the parallel competing tasks have a much lower priority.

As a general rule, try to avoid ASAP tasks whenever possible. Have a close
eye on tasks that have been switched implicitely to ALAP mode because the
end attribute comes after the start attribute.

Attributes Name Type Description

type ID Possible values are
alap or asap.

Context task,

Inheritable Yes Scenario Spec. No

See also depends, end, precedes, start

project prj "Scheduling Example" "1.0" 2005-07-23 2005-09-01

task items "Project breakdown" {
task t1 "Task 1" {
start 2005-07-25
end 2005-08-01
Implicite ALAP task

128

Chapter 7. Property Reference

}
task t2 "Task 2" {
end 2005-08-01
start 2005-07-25
Implicite ASAP task

}
task t3 "Task 3" {
start 2005-07-25
end 2005-08-01
scheduling asap
Explicite ASAP task

}
task t4 "Task 4" {
end 2005-08-01
start 2005-07-25
scheduling alap
Explicite ALAP task

}
}

7.95. select <mode>

select <mode>
Description The select functions controls which resource is picked from an allocation

and it’s alternatives. The selection is re-evaluated each time the resource
used in the previous time slot becomes unavailable.
Even for non-persistent allocations a change in the resource selection only
happends if the resource used in the previous (or next for ASAP tasks) time
slot has become unavailable.

Attributes Name Type Description

mode ID See table below for
possible values.

Context allocate,

Inheritable No Scenario Spec. No

See also persistent

maxloaded Pick the available resource that has been used the most so far.
minloaded Pick the available resource that has been used the least so far.
minallocated Pick the resource that has the smallest allocation factor. The allocation factor is calculated from the various allocations of the resource across the tasks. This is the default setting.
order Pick the first available resource from the list.

129

Chapter 7. Property Reference

random Pick a random resource from the list.

project prj "Project" "1.0" 2000-01-01 2000-03-01

resource tuxus "Tuxus"
resource tuxia "Tuxia"

task t1 "Task 1" {
start 2000-01-01
effort 5d
First try to allocate Tuxus. When he is not available try Tuxia.
allocate tuxus { alternative tuxia select order }

}

task t2 "Task 2" {
start 2000-01-01
effort 5d
Use tuxux or tuxia, whoever is available and try to balance
the allocated load.
allocate tuxus { alternative tuxia select minloaded}

}

task t3 "Task 3" {
start 2000-01-01
effort 5d
For slave drivers: Always pick the resource that has been loaded
the most already.
allocate tuxus { alternative tuxia select maxloaded}

}

7.96. sloppy <value>

sloppy <value>
Description Controls how strict TaskJuggler checks booking intervals for conflicts with

vacation and other bookings. In case the error is surpressed the booking will
not overwrite the existing bookings. It will avoid the already assigned
intervals during booking.

Attributes Name Type Description

value INTEGER Number between 0 and
3. See table below.

Context booking,

Inheritable No Scenario Spec. No

130

Chapter 7. Property Reference

sloppy 0: Period may not contain any off-duty hours, vacation or other task assignments.
sloppy 1: Period may contain off-duty hours, but not vacation or other task assignments.
sloppy 2: Period may contain off-duty hours and vacation, but no other task assignments.
sloppy 3: Period may overlap with off-duty hours, vacation or other task assignments. These are silently skipped.

project prj "Project" "1.0" 2003-06-05 2003-07-05 {
The baseline date for the projection.
now 2003-06-15
scenario plan "Plan" {
Compute when the task will be ready based on the already done
work and the current date.
projection

}
}

resource r1 "Resource 1"

task t1 "Task 1" {
start 2003-06-05
effort 10d
allocate r1

}

supplement resource r1 {
This is the work that has been done up until now by r1.
booking 2003-06-06 2003-06-07 t1 { sloppy 2 }
booking 2003-06-08 2003-06-09 t1 { sloppy 2 }
booking 2003-06-11 2003-06-12 t1 { sloppy 2 }

}

7.97. shift <id> <name>

shift <id> <name>
Description When several resource have the same working hours, these working hours

should be defined as shifts. Each shift must have a unique ID. Resources can
be assigned to shifts for certain intervals. Shifts can also be used to limit
work on certain tasks to the hours of the shift.

Attributes Name Type Description

id ID
name STRING

131

Chapter 7. Property Reference

shift <id> <name>
Optional Attributes shift, workinghours

Context The TJP File, shift,

Inheritable No Scenario Spec. No

See also shift

project prj "Example" "1.0" 2000-01-01 2000-01-31

shift s1 "Shift1" {
Special working hours Monday to Wednesday. Use program defaults
for other days.
workinghours mon 10:00 - 12:00, 13:00-15:00
workinghours tue 9:00-14:00
workinghours wed off

shift s2 "Shift2" {
Like s1 but with different times on Monday
workinghours mon 10:00 - 17:00

}
}

resource r1 "Resource1" {
shift s1 2000-01-01 - 2000-01-10
shift s2 2000-01-11 - 2000-01-20

}

task t1 "Task1" {
start 2000-01-01
length 200h
During the specified interval only work at the shift s2 working
hours.
shift s2 2000-01-09 - 2000-01-17

}

7.98. shift <shiftid> [<dateinterval>]

shift <shiftid> [<dateinterval>]
Description Limites the resource working time or work on a task to a defined shift during

the specified interval. Multiple shifts can be defined, but shift intervals may
not overlap.

132

Chapter 7. Property Reference

shift <shiftid> [<dateinterval>]
Attributes Name Type Description

shiftid ID The ID of the selected
shift.

dateinterval DATEINTERVAL If an interval is
specified, no allocations
will be made outside the
shift intervals unless
other shifts have been
selected for other time
intervals. If the interval
is omitted, the shift is
assigned for the whole
project time frame.

Context allocate, resource, task,

Inheritable No Scenario Spec. No

See also shift

project prj "Example" "1.0" 2000-01-01 2000-01-31

shift s1 "Shift1" {
Special working hours Monday to Wednesday. Use program defaults
for other days.
workinghours mon 10:00 - 12:00, 13:00-15:00
workinghours tue 9:00-14:00
workinghours wed off

shift s2 "Shift2" {
Like s1 but with different times on Monday
workinghours mon 10:00 - 17:00

}
}

resource r1 "Resource1" {
shift s1 2000-01-01 - 2000-01-10
shift s2 2000-01-11 - 2000-01-20

}

task t1 "Task1" {
start 2000-01-01
length 200h
During the specified interval only work at the shift s2 working
hours.
shift s2 2000-01-09 - 2000-01-17

}

133

Chapter 7. Property Reference

7.99. shorttimeformat <format>

shorttimeformat <format>
Description Specifies time format for time short specifications. This is normal just the

hour and minutes.

Attributes Name Type Description

format STRING

Context htmlaccountreport, htmlresourcereport, htmlstatusreport, htmltaskreport,
htmlweeklycalendar, project, resourcereport, taskreport,

Inheritable Yes Scenario Spec. No

See also timeformat

7.100. showprojectids

showprojectids
Description Specifies that calendar columns in reports should contain the project ID after

the load value.

Context htmlresourcereport, htmltaskreport, htmlweeklycalendar, resourcereport,
taskreport,

Inheritable No Scenario Spec. No

See also barlabels, columns

7.101. sortaccounts <criteria> [, <criteria> ...]

sortaccounts <criteria> [, <criteria> ...]

134

Chapter 7. Property Reference

sortaccounts <criteria> [, <criteria> ...]
Description Determines how the accounts are sorted in the report. Up to 3 criteria can be

specified. If one criteria is not sufficient to sort a group of accounts, the next
criteria will be used to sort the accounts within this group.

Attributes Name Type Description

criteria SORTINGCRITERIA Possible values are
fullnamedown,
fullnameup, iddown,
idup, indexdown,
indexup, namedown,
nameup, sequencedown,
sequenceup, tree

Context csvaccountreport, htmlaccountreport,

Inheritable No Scenario Spec. No

7.102. sortresources <criteria> [, <criteria> ...]

sortresources <criteria> [, <criteria> ...]
Description Determines how the resources are sorted in the report. Up to 3 criteria can be

specified. If one criteria is not sufficient to sort a group of accounts, the next
criteria will be used to sort the accounts within this group.

Attributes Name Type Description

criteria SORTINGCRITERIA Possible values are
fullnamedown,
fullnameup, iddown,
idup, indexdown,
indexup,
maxeffortdown,
maxeffortup,
mineffortdown,
mineffortup, namedown,
nameup, ratedown,
rateup, sequencedown,
sequenceup, tree

Context csvresourcereport, htmlresourcereport, htmltaskreport, htmlweeklycalendar,
resourcereport, taskreport,

Inheritable No Scenario Spec. No

135

Chapter 7. Property Reference

7.103. sorttasks <criteria> [, <criteria> ...]

sorttasks <criteria> [, <criteria> ...]
Description Determines how the tasks are sorted in the report. Up to 3 criteria can be

specified. If one criteria is not sufficient to sort a group of accounts, the next
criteria will be used to sort the accounts within this group.

Attributes Name Type Description

criteria SORTINGCRITERIA Possible values are
completeddown,
completedup,
criticalnessdown,
criticalnessup, enddown,
endup, fullnamedown,
fullnameup, iddown,
idup, indexdown,
indexup, namedown,
nameup,
pathcriticalnessdown,
pathcriticalnessup,
prioritydown,
priorityup,
responsibledown,
responsibleup,
sequencedown,
sequenceup, startdown,
startup, statusdown,
statusup, tree

Context csvtaskreport, htmlresourcereport, htmltaskreport, htmlweeklycalendar,
resourcereport, taskreport,

Inheritable No Scenario Spec. No

project test "Test Project" "$Id" 2000-01-01 2000-03-01

flags flag1, flag2, flag3, flag4

rate 100.0

resource r1 "FooResource 1"
resource r2 "FooResource 2"
resource r3 "FooResource 3"
resource r4 "FooResource 4"

136

Chapter 7. Property Reference

account a1 "FooAccount 1" cost {
account a3 "FooAccount 3"

}

account a2 "FooAccount 2" revenue {
account a4 "FooAccount 4"

}

task t1 "FooTask1" {
account a4
task t1_1 "FooTask1_1" {
flags flag2
start 2000-01-01
effort 20d
allocate r1
allocate r2

}
flags flag3

}

task t2 "FooTask2" {
flags flag1
start 2000-01-01
duration 1d
startcredit 10000.0
account a2

}

task t3 "FooTask3" {
flags flag4
milestone
start 2000-01-01

}

htmltaskreport "Report_task.html" {
columns hierarchindex, name { title "Task Name" }, daily, effort
sorttasks tree, startup, nameup

}

htmlresourcereport "Report_resource.html" {
}

htmlaccountreport "Report_account.html" {
columns name, weekly
hideaccount 0

}

137

Chapter 7. Property Reference

7.104. start <date>

start <date>
Description Specifies the start date of the report. In task reports only tasks that end after

this end date are listed.

Attributes Name Type Description

date DATE

Context csvaccountreport, csvresourcereport, csvtaskreport, export,
htmlaccountreport, htmlresourcereport, htmlstatusreport, htmltaskreport,
htmlweeklycalendar, resourcereport, taskreport,

Inheritable No Scenario Spec. No

See also end

project prj "Project" "1.0" 2000-01-01 2000-03-01

resource r "Resource"

task t "Task" {
start 2000-01-01
effort 10d
allocate r

}

Export the project as fully scheduled project.
export "FullProject.tjp" {
taskattributes all
hideresource 0

}

Export only bookings for 1st week as resource supplements
export "Week1Bookings.tji" {
properties bookings
start 2000-01-01
end 2000-01-08

}

7.105. start <date>

138

Chapter 7. Property Reference

start <date>
Description The start date of the task. This attribute also implicitely sets the scheduling

policy of the task to asap.

Attributes Name Type Description

date DATE

Context task,

Inheritable Yes Scenario Spec. Yes

See also end, maxstart, minstart, scheduling, startbuffer

project duration "Duration Example" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"

task t "Enclosing" {
start 2005-06-06
task durationTask "Duration Task" {
This task is 10 calendar days long.
duration 10d

}

task intervalTask "Interval Task" {
This task is similar to the durationTask. Instead of a start
date and a duration it has a fixed start and end date.
end 2005-06-17
}

task lengthTask "Length Task" {
This task 10 working days long. So about 12 calendar days.
length 10d

}

task effortTask "Effort Task" {
effort 10d
allocate tux

}
}

7.106. startbuffer <percent>

139

Chapter 7. Property Reference

startbuffer <percent>
Description Specifies how much slack time you expect to have at the begining of the task.

This information has no impact on the scheduling of the project. It is for
documentation purposes only.

Attributes Name Type Description

percent REAL Percent slack of the
overall effort, duration
or length of the task.

Context task,

Inheritable No Scenario Spec. Yes

See also duration, endbuffer, effort, length

project simple "Simple Project" "$Id" 2000-01-01 2000-01-20

resource tux1 "Tux1"

task t1 "Task1" {
start 2000-01-01
length 10d
20% of the working time of this task are marked as buffer at the
beginning.
startbuffer 20
An additional 10% of the working time of this task are marked as
buffer at the end.
endbuffer 10.0
allocate tux1

}

Generate a report that lists the start end end dates for the
buffers.
htmltaskreport "Buffer.html" {
columns no, name, start, startbufferend, endbufferstart, end,
startbuffer, endbuffer, duration, effort, daily
hideresource 0

}

7.107. startcredit <amount>

startcredit <amount>

140

Chapter 7. Property Reference

startcredit <amount>
Description Specifies an amount that is credited to the account specified by the account

property at the moment the tasks starts.

Attributes Name Type Description

amount REAL

Context task,

Inheritable No Scenario Spec. Yes

See also endcredit

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26 {
currency "USD"

}

account project_cost "Project Costs" cost
account payments "Customer Payments" revenue {
credit 2005-06-08 "Customer down payment" 500.0

}

resource tux "Tux" {
rate 300

}

task items "Project breakdown" {
start 2005-06-06
The default account for all tasks
account project_cost

task plan "Plan work" {
Some upfront material cost
startcredit 500.0
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation
account payments
Customer pays at end of acceptance
endcredit 2000.0

}

141

Chapter 7. Property Reference

}

htmlaccountreport "PAndL.html" {
timeformat "%d-%M-%y"
accumulate
columns index, name, weekly

}

7.108. statusnote <text>

statusnote <text>
Description A note that describes the current status of the task.

Attributes Name Type Description

text STRING

Context task,

Inheritable No Scenario Spec. Yes

See also journalentry, note

7.109. subtitle <text>

subtitle <text>
Description Specifies an alternative subtitle for a report column.

Attributes Name Type Description

text STRING

Context columns,

Inheritable No Scenario Spec. No

See also subtitleurl

project prj "Project" "1.0" 2005-01-01 2005-03-01

resource r "Resource"

142

Chapter 7. Property Reference

task t "Task" {
task s "SubTask" {
start 2005-01-01
effort 5d
allocate r

}
}

Just a very basic report with some standard columns
htmltaskreport "SimpleReport.html" {
columns hierarchindex, name, start, end, weekly

}

Report with custom colum title
htmltaskreport "CustomTitle.html" {
columns hierarchindex, name { title "Work Item" }, effort

}

Report with custom colum title and subtitle
htmltaskreport "CustomSubTitle.html" {
columns hierarchindex, name,

monthly { title " " subtitle "$${month} $${year}" }
loadunit days

}

Report with efforts only for leaf tasks
htmltaskreport "LeafEfforts.html" {
columns hierarchindex, name,

effort { hidecelltext ~isLeaf() }
}

Report with link in title of calendar
htmltaskreport "LinkURL.html" {
columns hierarchindex, name,

monthly { subtitleurl "Monthly-Detail-$${month}.html" }
}

Report with link to page with furter task details
htmltaskreport "LinkToTaskDetails.html" {
columns hierarchindex,

name { cellurl "TaskDetails-$${taskid}.html"
hidecellurl ~isLeaf() }, start, end

}

Report with index and task name combined in one single column
htmltaskreport "CombinedColumn.html" {
columns name { celltext "$${hierarchno} $${0}"}, start, end, weekly

}

143

Chapter 7. Property Reference

7.110. subtitleurl <url>

subtitleurl <url>
Description Specifies an URL that is attached to the column subtitle of HTML reports.

Attributes Name Type Description

url STRING

Context columns,

Inheritable No Scenario Spec. No

See also subtitle

project prj "Project" "1.0" 2005-01-01 2005-03-01

resource r "Resource"

task t "Task" {
task s "SubTask" {
start 2005-01-01
effort 5d
allocate r

}
}

Just a very basic report with some standard columns
htmltaskreport "SimpleReport.html" {
columns hierarchindex, name, start, end, weekly

}

Report with custom colum title
htmltaskreport "CustomTitle.html" {
columns hierarchindex, name { title "Work Item" }, effort

}

Report with custom colum title and subtitle
htmltaskreport "CustomSubTitle.html" {
columns hierarchindex, name,

monthly { title " " subtitle "$${month} $${year}" }
loadunit days

}

Report with efforts only for leaf tasks
htmltaskreport "LeafEfforts.html" {
columns hierarchindex, name,

effort { hidecelltext ~isLeaf() }
}

144

Chapter 7. Property Reference

Report with link in title of calendar
htmltaskreport "LinkURL.html" {
columns hierarchindex, name,

monthly { subtitleurl "Monthly-Detail-$${month}.html" }
}

Report with link to page with furter task details
htmltaskreport "LinkToTaskDetails.html" {
columns hierarchindex,

name { cellurl "TaskDetails-$${taskid}.html"
hidecellurl ~isLeaf() }, start, end

}

Report with index and task name combined in one single column
htmltaskreport "CombinedColumn.html" {
columns name { celltext "$${hierarchno} $${0}"}, start, end, weekly

}

7.111. supplement <type>

supplement <type>
Description The supplement keyword provides a mechanism to add more attributes to

already defined tasks or resources. The additional attributes must obey the
same rules as in regular task or resource definitions and must be enclosed by
curly braces.
This construct is primarily meant for situations where the information about
a task or resource is split over several files. E. g. the vacation dates for the
resources may be in a separate file that was generated by some other tool.

Attributes Name Type Description

type ID Possible values are
resource or task.

Context The TJP File, task,

Inheritable No Scenario Spec. No

See also resource, task

project test "Test Project" "$Id" 2000-01-01 2000-01-04

145

Chapter 7. Property Reference

flags important

resource joe "Joe"

task top "Top Task" {
start 2000-01-01

task sub "Sub Task" {
}
supplement task sub {
length 1d

}
}

supplement resource joe {
vacation 2000-02-10 - 2000-02-20

}

supplement task top {
flags important

}

7.112. task <id> <name>

task <id> <name>
Description Tasks are the central elements of a project plan. Use a task to specify which

resource should be allocated for how long to what task.

Attributes Name Type Description

id ID
name STRING

Optional Attributes account, allocate, complete, depends, duration, effort, endbuffer, endcredit,
end, flags, journalentry, length, maxend, maxstart, milestone, minend,
minstart, note, precedes, priority, projectid, reference, responsible,
scheduled, scheduling, shift, startbuffer, startcredit, start, statusnote,
supplement, task

Context The TJP File, task,

Inheritable No Scenario Spec. No

See also resource

146

Chapter 7. Property Reference

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

taskreport "My Tasks"

7.113. taskattributes <attribute> [, <attribute> ...]

taskattributes <attribute> [, <attribute> ...]
Description The list of attribute names specifies which task attributes should be listed in

the report in addition to the ones exported by default. The following values
are supported. They correspond to the respective attributes of a task.
complete, depends, flags, maxend, maxstart, minend, minstart,
note, priority, responsible

By specifying the ID of a user-defined attribute, these can be included as
well.

A special case the is all keyword. If this is part of the list, all supported
task attributes will be included in the report. This includes all user-defined
task attributes.

Attributes Name Type Description

147

Chapter 7. Property Reference

taskattributes <attribute> [, <attribute> ...]
attribute ID

Context export,

Inheritable No Scenario Spec. No

project prj "Project" "1.0" 2000-01-01 2000-03-01

resource r "Resource"

task t "Task" {
start 2000-01-01
effort 10d
allocate r

}

Export the project as fully scheduled project.
export "FullProject.tjp" {
taskattributes all
hideresource 0

}

Export only bookings for 1st week as resource supplements
export "Week1Bookings.tji" {
properties bookings
start 2000-01-01
end 2000-01-08

}

7.114. taskprefix <prefix>

taskprefix <prefix>
Description All tasks in the included file are added as sub-tasks of the task specified by

taskprefix. The taskprefix must be a valid absolute ID of an already
defined task.

Attributes Name Type Description

prefix ID

Context include,

Inheritable No Scenario Spec. No

See also task

148

Chapter 7. Property Reference

project yourId "Your Project" "1.0" 2005-04-05 2005-05-01

task main "Main task" {
}

include "Include2.tji" { taskprefix main }

7.115. taskreport <file>

taskreport <file>
Description This report is intended for the TaskJuggler graphical user interface. The

report lists all tasks and their respective values as a HTML page. The
resources that are allocated to the tasks can be listed as well.

Attributes Name Type Description

file STRING

Optional Attributes caption, columns, end, headline, hideresource, hidetask, loadunit,
rollupresrouce, rolluptask, scenario, shorttimeformat, showprojectids,
sortresources, sorttasks, start, taskroot, timeformat

Context
Inheritable No Scenario Spec. No

See also csvtaskreport, htmlaccountreport, htmlresourcereport, resourcereport

project simple "Simple Project" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"
resource tuxia "Tuxia"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
task phase1 "Phase 1" {
effort 5d
allocate tuxia

}

149

Chapter 7. Property Reference

task phase2 "Phase 2" {
effort 2d
allocate tux

}
}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

taskreport "Project Breakdown" {
columns start, end, effort
Open only the first level of tasks
rolluptask treelevel() > 1

}

resourcereport "Resource Allocations" {
columns id, effort
We only want to see the tasks with real work (without parents),
sorted by name
sorttasks nameup
hidetask ~isleaf()

}

7.116. taskroot <root>

taskroot <root>
Description Only tasks below the specified root-level tasks are exported. The exported

tasks will have the id of the root-level task stripped from their ID, so that the
sub-tasks of the root-level task become top-level tasks in the exported file.

Attributes Name Type Description

root ID ID of a task that
specifies the new root
level

Context export, taskreport,

150

Chapter 7. Property Reference

taskroot <root>
Inheritable No Scenario Spec. No

project prj "Taskroot Example" "1.0" 2005-07-22 2005-08-26

task items "Project breakdown" {
start 2005-07-22

task plan "Plan work" {
length 3d

}

task implementation "Implement work" {
task phase1 "Phase 1" {
length 5d
depends !!plan

}
task phase2 "Phase 2" {
length 3d
depends !phase1

}
task phase3 "Phase 3" {
length 4d
depends !phase2

}
}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

taskreport "My Tasks" {
taskroot items.implementation

}

7.117. timezone <zone>

timezone <zone>

151

Chapter 7. Property Reference

timezone <zone>
Description Sets the default timezone of the project. All times that have no time zones

specified will be assumed to be in this timezone. The value must be a string
just like those used for the TZ environment variable. Most Linux systems
have a command line utility called tzselect to lookup possible values.
The project start and end time are not affected by this setting. You have to
explicitly state the timezone for those dates or the system defaults are
assumed.

Attributes Name Type Description

zone STRING

Context project,

Inheritable No Scenario Spec. No

7.118. timeformat <format>

timeformat <format>
Description Determines how time specifications in reports look like.

Attributes Name Type Description

format STRING See table below for
possible values.

Context htmlaccountreport, htmlresourcereport, htmlstatusreport, htmltaskreport,
htmlweeklycalendar, project, resourcereport, taskreport,

Inheritable Yes Scenario Spec. No

See also shorttimeformat

Ordinary characters placed in the format string are copied to s without conversion. Conversion specifiers
are introduced by a ‘%’ character, and are replaced in s as follows:

%a The abbreviated weekday name according to the current locale.
%A The full weekday name according to the current locale.
%b The abbreviated month name according to the current locale.
%B The full month name according to the current locale.
%c The preferred date and time representation for the current locale.
%C The century number (year/100) as a 2-digit integer. (SU)
%d The day of the month as a decimal number (range 01 to 31).
%D Equivalent to %m/%d/%y. (Yecch - for Americans only. Americans should note that in other countries %d/%m/%y is rather common. This means that in international context this format is ambiguous and should not be used.) (SU)

152

Chapter 7. Property Reference

%e Like %d, the day of the month as a decimal number, but a leading zero is replaced by a space. (SU)
%E Modifier: use alternative format, see below. (SU)
%F Equivalent to %Y-%m-%d (the ISO 8601 date format). (C99)
%G The ISO 8601 year with century as a decimal number. The 4-digit year corresponding to the ISO week number (see %V). This has the same format and value as %y, except that if the ISO week number belongs to the previous or next year, that year is used instead. (TZ)
%g Like %G, but without century, i.e., with a 2-digit year (00-99). (TZ)
%h Equivalent to %b. (SU)
%H The hour as a decimal number using a 24-hour clock (range 00 to 23).
%I The hour as a decimal number using a 12-hour clock (range 01 to 12).
%j The day of the year as a decimal number (range 001 to 366).
%k The hour (24-hour clock) as a decimal number (range 0 to 23); single digits are preceded by a blank. (See also %H.) (TZ)
%l The hour (12-hour clock) as a decimal number (range 1 to 12); single digits are preceded by a blank. (See also %I.) (TZ)
%m The month as a decimal number (range 01 to 12).
%M The minute as a decimal number (range 00 to 59).
%n A newline character. (SU)
%O Modifier: use alternative format, see below. (SU)
%p Either ’AM’ or ’PM’ according to the given time value, or the corresponding strings for the current locale. Noon is treated as ‘pm’ and midnight as ’am’.
%P Like %p but in lowercase: ’am’ or ’pm’ or %a corresponding string for the current locale. (GNU)
%r The time in a.m. or p.m. notation. In the POSIX locale this is equivalent to ’%I:%M:%S %p’. (SU)
%R The time in 24-hour notation (%H:%M). (SU) For a version including the seconds, see %T below.
%s The number of seconds since the Epoch, i.e., since 1970-01-01 00:00:00 UTC. (TZ)
%S The second as a decimal number (range 00 to 61).
%t A tab character. (SU)
%T The time in 24-hour notation (%H:%M:%S). (SU)
%u The day of the week as a decimal, range 1 to 7, Monday being 1. See also %w. (SU)
%U The week number of the current year as a decimal number, range 00 to 53, starting with the first Sunday as the first day of week 01. See also %V and %W.
%V The ISO 8601:1988 week number of the current year as a decimal number, range 01 to 53, where week 1 is the first week that has at least 4 days in the current year, and with Monday as the first day of the week. See also %U %and %W. %(SU)
%w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u.
%W The week number of the current %year as a decimal number, range 00 to 53, starting with the first Monday as the first day of week 01.
%x The preferred date representation for the current locale without the time.
%X The preferred time representation for the current locale without the date.
%y The year as a decimal number without a century (range 00 to 99).
%Y The year as a decimal number including the century.
%z The time zone as hour offset from GMT. Required to emit RFC822-conformant dates (using "%a, %d %%b %Y %H:%M:%S %%z"). (GNU)
%Z The time zone or name or abbreviation.
%+ The date and time in date(1) format. (TZ)
%% A literal ’%’ character.

Some conversion specifiers can be modified by preceding them by the E or O modifier to indicate that an
alternative format should be used. If the alternative format or specification does not exist for the current
locale, the behavior will be as if the unmodified conversion specification were used. (SU) The Single
Unix Specification mentions %Ec, %EC, %Ex, %%EX, %Ry, %EY, %Od, %Oe, %OH, %OI, %Om,
%OM, %OS, %Ou, %OU, %OV, %Ow, %OW, %Oy, where the effect of the O modifier is to use
alternative numeric symbols (say, Roman numerals), and that of the E modifier is to use a
locale-dependent alternative representation.

The documentation of the timeformat attribute has been taken from the man page of the GNU
strftime function.

153

Chapter 7. Property Reference

7.119. timingresolution <value> <unit>

timingresolution <value> <unit>
Description Sets the minimum timing resolution. The smaller the value, the longer the

scheduling process lasts and the more memory the application needs. The
default is 1 hour. The smallest value is 5 min.
This value is a pretty fundamental setting of TaskJuggler. It has a severe
impact on memory usage and scheduling performance. You should set this
value to the minimum required resolution. Make sure that all values that you
specify are aligned with the resolution.

Attributes Name Type Description

value INTEGER
unit UNIT

Context project,

Inheritable No Scenario Spec. No

7.120. title <text>

title <text>
Description Specifies an alternative title for a report column.

Attributes Name Type Description

text STRING

Context columns,

Inheritable No Scenario Spec. No

See also titleurl

project prj "Project" "1.0" 2005-01-01 2005-03-01

resource r "Resource"

task t "Task" {
task s "SubTask" {
start 2005-01-01

154

Chapter 7. Property Reference

effort 5d
allocate r

}
}

Just a very basic report with some standard columns
htmltaskreport "SimpleReport.html" {
columns hierarchindex, name, start, end, weekly

}

Report with custom colum title
htmltaskreport "CustomTitle.html" {
columns hierarchindex, name { title "Work Item" }, effort

}

Report with custom colum title and subtitle
htmltaskreport "CustomSubTitle.html" {
columns hierarchindex, name,

monthly { title " " subtitle "$${month} $${year}" }
loadunit days

}

Report with efforts only for leaf tasks
htmltaskreport "LeafEfforts.html" {
columns hierarchindex, name,

effort { hidecelltext ~isLeaf() }
}

Report with link in title of calendar
htmltaskreport "LinkURL.html" {
columns hierarchindex, name,

monthly { subtitleurl "Monthly-Detail-$${month}.html" }
}

Report with link to page with furter task details
htmltaskreport "LinkToTaskDetails.html" {
columns hierarchindex,

name { cellurl "TaskDetails-$${taskid}.html"
hidecellurl ~isLeaf() }, start, end

}

Report with index and task name combined in one single column
htmltaskreport "CombinedColumn.html" {
columns name { celltext "$${hierarchno} $${0}"}, start, end, weekly

}

155

Chapter 7. Property Reference

7.121. titleurl <url>

titleurl <url>
Description Specifies an URL that is attached to the column title of HTML reports.

Attributes Name Type Description

url STRING

Context columns,

Inheritable No Scenario Spec. No

See also title

project prj "Project" "1.0" 2005-01-01 2005-03-01

resource r "Resource"

task t "Task" {
task s "SubTask" {
start 2005-01-01
effort 5d
allocate r

}
}

Just a very basic report with some standard columns
htmltaskreport "SimpleReport.html" {
columns hierarchindex, name, start, end, weekly

}

Report with custom colum title
htmltaskreport "CustomTitle.html" {
columns hierarchindex, name { title "Work Item" }, effort

}

Report with custom colum title and subtitle
htmltaskreport "CustomSubTitle.html" {
columns hierarchindex, name,

monthly { title " " subtitle "$${month} $${year}" }
loadunit days

}

Report with efforts only for leaf tasks
htmltaskreport "LeafEfforts.html" {
columns hierarchindex, name,

effort { hidecelltext ~isLeaf() }
}

156

Chapter 7. Property Reference

Report with link in title of calendar
htmltaskreport "LinkURL.html" {
columns hierarchindex, name,

monthly { subtitleurl "Monthly-Detail-$${month}.html" }
}

Report with link to page with furter task details
htmltaskreport "LinkToTaskDetails.html" {
columns hierarchindex,

name { cellurl "TaskDetails-$${taskid}.html"
hidecellurl ~isLeaf() }, start, end

}

Report with index and task name combined in one single column
htmltaskreport "CombinedColumn.html" {
columns name { celltext "$${hierarchno} $${0}"}, start, end, weekly

}

7.122. vacation <name> <interval>

vacation <name> <interval>
Description Specify a global vacation day. This vacation is respected by all resources that

are defined hereafter.

Attributes Name Type Description

name STRING
interval DATEINTERVAL

Context The TJP File,

Inheritable Yes Scenario Spec. No

See also vacation

project prj "Vacation Examples" "1.0" 2005-07-22 2006-01-01

Labor Day
vacation "Labor Day" 2005-09-05
2 days Christmas break (27th not included!)
vacation "Christmas" 2005-12-25 - 2005-12-27

resource team "A team" {

157

Chapter 7. Property Reference

A 2 days of team vacation
vacation 2005-10-07 - 2006-10-09
resource tux2 "Tux2"
resource tux3 "Tux3" {
And one extra day
vacation 2005-08-10

}
}

The vacation property is also usefull when new employees start
working in the course of a project or if someone quits.
resource tuxia "Tuxia" {
Tuxia is a new employee as of August 1st 2005
vacation 1971-01-01 - 2005-08-01

}

resource tuxus "Tuxus" {
Tuxus quits his job on September 1st 2005
vacation 2005-09-01 - 2030-01-01
}

task t "An important date" {
start 2005-07-22

}

7.123. vacation <interval>

vacation <interval>
Description Specify a vacation period for the resource. It can also be used to block out

the time before a resource joint or after it left. For employees changing their
work schedule from full-time to part-time, or vice versa, please refer to the
’Shift’ property.

Attributes Name Type Description

interval DATEINTERVAL

Context resource,

Inheritable Yes Scenario Spec. No

See also vacation, shift

project prj "Vacation Examples" "1.0" 2005-07-22 2006-01-01

158

Chapter 7. Property Reference

Labor Day
vacation "Labor Day" 2005-09-05
2 days Christmas break (27th not included!)
vacation "Christmas" 2005-12-25 - 2005-12-27

resource team "A team" {
A 2 days of team vacation
vacation 2005-10-07 - 2006-10-09
resource tux2 "Tux2"
resource tux3 "Tux3" {
And one extra day
vacation 2005-08-10

}
}

The vacation property is also usefull when new employees start
working in the course of a project or if someone quits.
resource tuxia "Tuxia" {
Tuxia is a new employee as of August 1st 2005
vacation 1971-01-01 - 2005-08-01

}

resource tuxus "Tuxus" {
Tuxus quits his job on September 1st 2005
vacation 2005-09-01 - 2030-01-01
}

task t "An important date" {
start 2005-07-22

}

7.124. version <number>

version <number>
Description Specifies which XML format should be generated. Currently version 2 is

highly recomended.

Attributes Name Type Description

number INTEGER

Context xmlreport,

Inheritable No Scenario Spec. No

159

Chapter 7. Property Reference

project simple "XML Report Example" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

This is the format that e. g. tjx2gantt can read
xmlreport "Version1.tjx" {
version 1

}

This is the format that taskjuggler can read and write
xmlreport "Version2.tjx" {
version 2

}

7.125. weeklymax <value> <unit>

weeklymax <value> <unit>
Description Sets the weekly limit of a resource usage or a resource allocation to a task.

Attributes Name Type Description

value REAL
unit UNIT

Context limits,

Inheritable Yes Scenario Spec. No

160

Chapter 7. Property Reference

weeklymax <value> <unit>
See also dailymax, monthlymax

project limits "Limits" "1.0" 2004-03-01 2004-05-01

Default limit that affects all subsequently defined resources
limits {
weeklymax 4d

}

resource r1 "R1" {
Limit the usage of this resource to a maximum of 2 hours per day,
6 hours per week and 2.5 days per month.
limits { dailymax 2h weeklymax 6h monthlymax 2.5d }

}

resource r2 "R2"

task t1 "Task 1" {
start 2004-03-01
duration 60d
allocation is subject to resource limits
allocate r1

}

task t2 "Task 2" {
start 2004-03-01
duration 60d
limits can also be specified per allocation
allocate r2 {
limits { dailymax 4h weeklymax 3d monthlymax 2w }

}
}

7.126. weekstartsmonday

weekstartsmonday
Description Specify that you want to base all week calculation on weeks starting on

Monday. This is common in many European countries.

Context project,

Inheritable No Scenario Spec. No

161

Chapter 7. Property Reference

weekstartsmonday
See also weekstartssunday

7.127. weekstartssunday

weekstartssunday
Description Specify that you want to base all week calculation on weeks starting on

Sunday. This is common in the United States of America.

Context project,

Inheritable No Scenario Spec. No

See also weekstartsmonday

7.128. workinghours <weekday> <interval> [,
<interval> ...]

workinghours <weekday> <interval> [, <interval> ...]
Description The working hours specification limits the availability of resources to certain

time slots of week days.

Attributes Name Type Description

weekday WEEKDAY
interval TIMEINTERVAL

Context project, resource, shift,

Inheritable Yes Scenario Spec. No

See also dailyworkinghours, yearlyworkingdays

project prj "Example Project" "1.0" 2000-01-01 2000-03-09 {
The following attributes are all optional. They illustrate the
default values. These attributes are only needed if you want to
specify different values than those listed below.
dailyworkinghours 8
yearlyworkingdays 260.714

162

Chapter 7. Property Reference

timingresolution 60min
timeformat "%Y-%m-%d %H:%M"
shorttimeformat "%H:%M"
currencyformat "(" ")" "," "." 0
weekstartsmonday
workinghours sun off
workinghours mon 9:00 - 12:00, 13:00 - 18:00
workinghours tue 9:00 - 12:00, 13:00 - 18:00
workinghours wed 9:00 - 12:00, 13:00 - 18:00
workinghours thu 9:00 - 12:00, 13:00 - 18:00
workinghours fri 9:00 - 12:00, 13:00 - 18:00
workinghours sat off

scenario plan "Plan" {
}

}

task t "Task" {
start 2000-01-01

}

7.129. xmlreport <file>

xmlreport <file>
Description Generates a XML report. TaskJuggler 2.x has a much improved XML

format. This is not yet the default, but will be in later versions. So you should
always specify which version of the XML format should be generated. The
file name should have a .tjx extension. Version 2 files are gzip compressed
XML Files. The DTD for the version 2 file format can be found on the
TaskJuggler Web Site (http://www.taskjuggler.org/show_dtd.php).

Attributes Name Type Description

file STRING

Optional Attributes hideresource, hidetask, rollupresrouce, rolluptask, scenarios, version

Context The TJP File,

Inheritable No Scenario Spec. No

project simple "XML Report Example" "1.0" 2005-06-06 2005-06-26

resource tux "Tux"

163

Chapter 7. Property Reference

task items "Project breakdown" {
start 2005-06-06

task plan "Plan work" {
length 3d

}

task implementation "Implement work" {
effort 5d
allocate tux
depends !plan

}

task acceptance "Customer acceptance" {
duration 5d
depends !implementation

}
}

This is the format that e. g. tjx2gantt can read
xmlreport "Version1.tjx" {
version 1

}

This is the format that taskjuggler can read and write
xmlreport "Version2.tjx" {
version 2

}

7.130. yearlyworkingdays <days>

yearlyworkingdays <days>
Description Specifies the number of average working days per year. This should

correlate to the specified workinghours and vacation. It affects the
conversion of working hours, working days, working weeks, working
months and working years into each other.
When public holidays and vacations are disregarded, this value should be
equal to the number of working days per week times 52.1428 (the average
number of weeks per year). E. g. for a culture with 5 working days it is
260.714 (the default), for 6 working days it is 312.8568 and for 7 working
days it is 365.

Attributes Name Type Description

164

Chapter 7. Property Reference

yearlyworkingdays <days>
days REAL

Context project,

Inheritable No Scenario Spec. No

See also dailyworkinghours, loadunit, vacation, workinghours

project prj "Example Project" "1.0" 2000-01-01 2000-03-09 {
The following attributes are all optional. They illustrate the
default values. These attributes are only needed if you want to
specify different values than those listed below.
dailyworkinghours 8
yearlyworkingdays 260.714
timingresolution 60min
timeformat "%Y-%m-%d %H:%M"
shorttimeformat "%H:%M"
currencyformat "(" ")" "," "." 0
weekstartsmonday
workinghours sun off
workinghours mon 9:00 - 12:00, 13:00 - 18:00
workinghours tue 9:00 - 12:00, 13:00 - 18:00
workinghours wed 9:00 - 12:00, 13:00 - 18:00
workinghours thu 9:00 - 12:00, 13:00 - 18:00
workinghours fri 9:00 - 12:00, 13:00 - 18:00
workinghours sat off

scenario plan "Plan" {
}

}

task t "Task" {
start 2000-01-01

}

165

Chapter 8. The Example: Accounting Software

/*
* This file contains an example project. It is part of the

* TaskJuggler project management tool. It uses a made up software

* development project to demontrate some of the basic features of

* TaskJuggler. Please see the TaskJuggler manual for a more detailed

* description of the various syntax elements.

*/
project acso "Accounting Software" "1.0" 2002-01-16 2002-05-28 {
Pick a day during the project that will be reported as ’today’ in
the project reports. If not specified the current day will be
used, but this will likely be ouside of the project range, so it
can’t be seen in the reports.
now 2002-03-05-13:00
Hide the clock time. Only show the date.
timeformat "%Y-%m-%d"
The currency for all money values is EUR.
currency "EUR"

We want to compare the baseline scenario, to one with a slightly
delayed start.
scenario plan "Plan" {
scenario delayed "Delayed"

}
}

The daily default rate of all resources. This can be overriden for each
resource. We specify this, so that we can do a good calculation of
the costs of the project.
rate 310.0

This is one way to form teams
macro allocate_developers [
allocate dev1
allocate dev2 { limits { dailymax 4h } }
allocate dev3

]

flags team

resource dev "Developers" {
resource dev1 "Paul Smith" { rate 330.0 }
resource dev2 "SÃ©bastien Bono"
resource dev3 "Klaus MÃ¼ller" { vacation 2002-02-01 - 2002-02-05 }

flags team
}
resource misc "The Others" {
resource test "Peter Murphy" { limits { dailymax 6.4h } rate 240.0 }

166

Chapter 8. The Example: Accounting Software

resource doc "Dim Sung" { rate 280.0 vacation 2002-03-11 - 2002-03-16 }

flags team
}

In order to do a simple profit and loss analysis of the project we
specify accounts. One for the development costs, one for the
documentation costs and one account to credit the customer payments
to.
account dev "Development" cost
account doc "Dokumentation" cost
account rev "Payments" revenue

Now we specify the work packages. The whole project is described as
a task that contains sub tasks. These sub tasks are then broken down
into smaller tasks and so on. The innermost tasks describe the real
work and have resources allocated to them. Many attributes of tasks
are inherited from the enclosing task. This saves you a lot of
writing.
task AcSo "Accounting Software" {

All work related costs will be booked to this account unless the
sub tasks specifies it differently.
account dev

task spec "Specification" {
The effort to finish this task is 20 man days.
effort 20d
Now we use the above declared macro to allocate the resources
for this task. Since they can work in parallel, this task may be
finshed earlier than 20 working days.
${allocate_developers}
Each task that does not have sub tasks must have a start or end
criteria and a duration. For this task we use a reference to a
further down defined milestone as a start criteria. So this task
cannot start, before the specified milestone has been reached.
References to other tasks may be relative. Each ! means ’in the
scope of the enclosing task’. To descent into a task the .
together with the id of the tasks have to be specified.
depends !deliveries.start

}

task software "Software Development" {

The software is the most critical task of the project. So we set
the priority of this tasks (and all sub tasks) to 1000, the top
priority. The higher the priority the more likely will the task
get the requested resources.
priority 1000

task database "Database coupling" {
effort 20d
This task depends on a task in the scope of the enclosing

167

Chapter 8. The Example: Accounting Software

tasks enclosing task. So we need 2 ! to get there.
depends !!spec
allocate dev1, dev2

}

task gui "Graphical User Interface" {
effort 35d
This task has taken 5 man days more than originally planned.
We record this as well, so that we can generate reports that
compare the delayed schedule of the project to the original plan.
delayed:effort 40d
depends !database, !backend
allocate dev2, dev3

}

task backend "Back-End Functions" {
effort 30d
This task is behind schedule since it should have been
finished already. To document this we specify that the tasks
is 95% completed. If nothing is specified, TaskJuggler assumes
that the task is on schedule and computes the completion rate
according to the current day and the plan data.
complete 95
depends !database, !!spec
allocate dev1, dev2

}
}

task test "Software testing" {

task alpha "Alpha Test" {
Efforts can not only be specified as man days, but also man
weeks, man hours, etc. Per default taskjuggler assumes a man
week is 40 man hours or 5 man days. These values can be
changed though.
effort 1w
depends !!software
allocate test, dev2
note "Hopefully most bugs will be found and fixed here."

}

task beta "Beta Test" {
effort 4w
depends !alpha
allocate test, dev1

}
}

task manual "Manual" {
effort 10w
depends !deliveries.start
allocate doc, dev3
account doc

168

Chapter 8. The Example: Accounting Software

}

task deliveries "Milestones" {

Some milestones have customer payments associated with them. We
credit these payments to the ’rev’ account.
account rev

task start "Projectstart" {
A task that has no duration is a milestone. It only needs a
start or end criteria. All other tasks depend on this task.
milestone
start 2002-01-16
For some reason the actual start of the project got delayed.
We record this, so that we can compare the plan run to the
delayed run of the project.
delayed:start 2002-01-20
At the begining of this task we receive a payment from the
customer. This is credited to the account assiciated with this
task when the task starts.
startcredit 33000.0

}

task prev "Technology Preview" {
milestone
depends !!software.backend
startcredit 13000.0

}

task beta "Betaversion" {
milestone
depends !!test.alpha
startcredit 13000.0

}

task done "Ship Product to customer" {
milestone
The next line can be uncommented to trigger a warning about
the project being late. For all tasks limits for the start and
end value can be specified. Those limits are checked after the
project has been scheduled. For all violated limits a warning
is issued.
maxend 2002-04-17
depends !!test.beta, !!manual
startcredit 14000.0

}
}

}

Now the project has been completely specified. Stopping here would
result in a valid TaskJuggler file that could be processed and
scheduled. But no reports would be generated to visualize the
results. So we request 7 HTML reports and 1 XML report to be

169

Chapter 8. The Example: Accounting Software

generated. The XML report is used to create a Postscript Gantt
chart.

This task report is for use with the TaskJuggler GUI
taskreport "Project Overview" {
columns start, end, effort, duration, completed, status, note, cost, revenue
scenario delayed

}

A resource report for use with the TaskJuggler GUI
resourcereport "Resource Usage" {
columns effort, freeload, utilization, rate
scenario delayed
hideresource 0

}

For conveniance we would like each report to contain links to the
other reports. So we declare a macro with a fragment of raw HTML
code to be embedded into all the HTML reports.
macro navbar [
rawhead
’<table align="center" border="2" cellpadding="10"
style="background-color:#f3ebae; font-size:105%">

<tr>
<td>Tasks Overview</td>
<td>Staff Overview</td>
<td>Accounting</td>
<td>Calendar</td>

</tr>
<tr>
<td>Tasks Details</td>
<td>Staff Details</td>
<td>Status Report</td>
<td>GANTT Chart (Postscript)</td>

</tr>
</table>

’

]

As the first report, we would like to have a general overview of all
tasks with their computed start and end dates. For better
readability we include a calendar like column that lists the effort
for each week.
htmltaskreport "Tasks-Overview.html" {
This report should contain the navigation bar we have declared
above.
${navbar}
The report should be a table that contains several columns. The
task and their information form the rows of the table. Since we
don’t like the title of the effort column, we change it to "Work".
columns hierarchindex, name, duration, effort { title "Work"},

start, end, weekly
For this report we like to have the abbreviated weekday in front

170

Chapter 8. The Example: Accounting Software

of the date. %a is the tag for this.
timeformat "%a %Y-%m-%d"

Don’t show load values.
barlabels empty
Set a title for the report
headline "Accounting Software Project"
And a short description what this report is about.
caption "This table presents a management-level overview of the
project. The values are days or man-days."

}

Now a more detailed report that shows all jobs and the people
assigned to the tasks. It also features a comparison of the plan and
delayed scenario.
htmltaskreport "Tasks-Details.html" {
${navbar}
Now we use a daily calendar.
columns no, name, start, end, scenario, daily
#start 2002-03-01
#end 2002-04-01
Show plan and delayed scenario values.
scenarios plan, delayed
headline "Accounting Software Project - March 2002"
caption "This table shows the load of each day for all the tasks.
Additionally the resources used for each task are listed. Since the
project start was delayed, the delayed schedule differs significantly
from the original plan."
Don’t hide any resources, that is show them all.
hideresource 0

}

The previous report listed the resources per task. Now we generate a
report the lists all resources.
htmlresourcereport "Staff-Overview.html" {
${navbar}
Add a column with the total effort per task.
columns no, name { cellurl "http://www.tj.org" }, scenario, weekly, effort
scenarios plan, delayed
Since we want to see the load values as hours per week, we switch
the unit that loads are reported in to hours.
loadunit hours
headline "Weekly working hours for the Accounting Software Project"

}

Now a report similar to the above one but with much more details.
htmlresourcereport "Staff-Details.html" {
${navbar}
columns name, daily, effort
To still keep the report readable we limit it to show only the
data for March 2002.
start 2002-01-16
end 2002-04-01

171

Chapter 8. The Example: Accounting Software

hidetask 0
The teams are virtual resources that we don’t want to see. Since
we have assigned a flag to those virtual resource, we can just
hide them.
hideresource team
We also like to have the report sorted alphabetically ascending by
resource name.
sortresources nameup
loadunit hours
headline "Daily working hours for the Accounting Software Project -
March 2002"

}

htmlweeklycalendar "Calendar.html" {
${navbar}
headline "Ongoing Tasks - March 2002"
start 2002-03-01
end 2002-04-01

}

htmlstatusreport "Status-Report.html" {
${navbar}

}

To conclude the HTML reports a report that shows how badly the
project is calculated is generated. The company won’t get rich with
this project. Due to the slip, it actually needs some money from the
bank to pay the salaries.
htmlaccountreport "Accounting.html" {
${navbar}
Besides the number of the account and the name we have a column
with the total values (at the end of the project) and the values
for each month of the project.
columns no, name, scenario, total, monthly
headline "P&L for the Accounting Software Project"
caption "The table shows the profit and loss

analysis as well as the cashflow situation of the Accounting
Software Project."

Since this is a cashflow calculation we show accumulated values
per account.
accumulate
scenarios plan, delayed

}

Finally we generate an XML report that contains all info about the
scheduled project. This will be used by tjx2gantt to create a nice
Gantt chart of our project.
xmlreport "AccountingSoftware.tjx" {
version 2
}

172

Chapter 9. Migrating from TaskJuggler 1.x to
2.x

9.1. Achiving compatibility

Are you also frustrated by tools that can’t read the data of their earlier incarnations? After all those files
contain your valuable data and the first impression that the wonderful new version makes is it’s rejection
to read your old files. With TaskJuggler we like to spare you such situations as much as possible. But
TaskJuggler 1.x has been written to solve the problems that we encountered. By releasing it to the
general public we learned that TaskJuggler is also very usefull to many other people. Some contacted us
to tell us that it would be even more usefull to them, if TaskJuggler would have this or that new feature.
In many cases we added these new features but we learned more and more that some parts of the original
TaskJuggler design were not flexible enough to support some new features. For TaskJuggler 2.x we
decided to change TaskJuggler to a more flexible design even if this meant that some syntax constructs
could no longer be supported.

As TaskJuggler uses plain text file as its main data format, you will always to able to read in your old
files. But in some cases, you need to change certain syntax constructs to the syntax. When TaskJuggler
processes a file with deprecated syntax it will generate an error message. This usually contains a hint,
how the statement should look like in new syntax. The following sections discuss the conceptual changes
and what statements need to be changed.

9.1.1. Syntax changes

TaskJugger 1.x could only handle two scenarios with the fixed name plan and actual. TaskJuggler 2.0
can now handle any number of scenarios. Scenario specific task attributes have to be prefixed with the
scenario ID followed by a colon. The attributes starting with ’plan’ or ’actual’ have been deprecated.

HTML reports are now a lot more flexible. New CSS elements have being used and the table elements
are customizable now. Old stylesheets will no longer work, since the attribute names have changed. A
HTML report contains CSS attribute class specification if you provide a custom stylesheet definition
with rawstylesheet.

The scenario name is no longer displayed by default if more than one scenario is included in a report. A
column scenario must be explicitly added if the scenario name should be reported for each line. The
attributes ’showactual’ and ’hideplan’ have been deprecated. The scenarios attribute now controls which
scenarios should be shown.

The format of numbers and currency values can now be specified with numberformat and
currencyformat. The old keyword currencydigits has been deprecated.

173

Chapter 9. Migrating from TaskJuggler 1.x to 2.x

workinghours and currency are no longer global properties. They are now optional attributes of the
project property.

Container tasks in export reports no longer have fixed start and end date if they have their sub tasks
exported as well.

The functions for Logical Expressions are now using capital letters to improve their readability. The all
lowercase versions are still supported, but the recommended versions are now the ones with intermixed
uppercase letters. isTaskOfProject was added as new query function.

Support for new XML format has been added. The old format is still supported. TJ can read both old and
new format XML files but will use the new XML format for output.

9.1.2. Scheduler changes

Length and duration tasks with resource allocations are no longer trimmed to the first and last resource
allocation. This can lead to different schedules.

’length’ based task now use the global working hours and global vacation settings as a criteria of what is
a working day. The tasks now always end during working hours and not at midnight.

The maximum allocation of a resource for a task is no longer limited by default. maxeffort now defaults
to 0 (unlimited) instead of 1.0 (8 hours per day). To have the same behaviour as in TaskJuggler 1.x
version you need to specify maxeffort 1.0 before any resource definition. This change was made
since many users were confused when after increasing the daily working hours resources were still only
allocated 8 hours per day.

174

Chapter 10. Questions and Answers

10.1. General Questions

Q: The GUI does not seem to have a New entry in the File menu. How can I create a new project?

A: ktjview2 does not support this funktionality. It’s mostly a project viewer. Use TaskJuggler if you
want to create projects from the GUI.

Q: Why does taskjuggler use Qt when it’s not an X11 application?

A: Qt is a very powerfull library that is much more than just a widget library. TaskJuggler uses Qt for all
kinds of internal data types like lists and arrays. It also uses the Unicode functions, the SQL database
interface and the XML support of Qt.

10.2. Compiling and installation

Q: Can TaskJuggler be compiled and used on Windows?

A: Probably yes, but we have never tried it. It should compile but require possible some minor tweaks of
the sources. You should have a good knowledge of C++ and Qt when you try this. Let us know if you
were successfull.

10.3. Usage

Nothing here yet.

175

Chapter 11. Copyright

TaskJuggler Copyright 2001, 2002, 2003, 2004, 2005 Chris Schläger <cs@suse.de>

This program is free software. You can redistribute it and modify it under the terms of the GNU General
Public License version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not,
write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

176

Chapter 12. Trademarks

Linux is a registered trademark of Linus Torvalds.

KDE and the K Desktop environment are a registered trademark of KDE e. V.

TaskJuggler is a trademark of Chris Schläer.

UNIX is a registered trademark and The Open Group is a trademark of The Open Group in the US and
other countries.

177

	The TaskJuggler Manual
	Table of Contents
	About this document
	Chapter 1. Introduction
	1.1. About TaskJuggler
	1.2. Features and Highlights
	1.3. TaskJuggler on the Web
	1.4. Change Log
	1.4.1. Version 1.0.0 (20020314)
	1.4.2. Version 1.0.1 (20020315)
	1.4.3. Version 1.1 (20020527)
	1.4.4. Version 1.2 (20020617)
	1.4.5. Version 1.3 (20020730)
	1.4.6. Version 1.4 (20021218)
	1.4.7. Version 1.4.1 (20030224)
	1.4.8. Version 1.4.2 (20030310)
	1.4.9. Version 1.9.0unstable (20030625)
	1.4.10. Version 1.9.1unstable (20030729)
	1.4.11. Version 1.9.2unstable (20030905)
	1.4.12. Version 2.0.0 (20031124)
	1.4.13. Version 2.0.1 (20040308)
	1.4.14. Version 2.1.0 (20050307)
	1.4.15. Version 2.1.1 (20050804)

	1.5. How to Contribute
	1.5.1. Why contribute?
	1.5.2. Preparing a contribution
	1.5.3. Creating a Patch
	1.5.4. Contributing Translations
	1.5.5. Some final words to Contributors

	Chapter 2. Installation
	2.1. Obtaining TaskJuggler
	2.2. The TaskJuggler Components
	2.2.1. The Graphical User Interfaces
	2.2.2. The command line tool taskjuggler
	2.2.3. The TaskJuggler Documentation
	2.2.4. tjx2gantt Transforms XML files to Postscript Gantt charts
	2.2.5. Contributed Stuff

	2.3. Compilation and Installation

	Chapter 3. Usage
	3.1. Basics
	3.2. General Usage
	3.3. The Command Line Options
	3.4. Reporting Bugs and Sending Feedback

	Chapter 4. Tutorial: Your First Project
	4.1. Starting the project
	4.2. Global Attributes
	4.3. Declaring Resources
	4.4. Declaring Accounts
	4.5. Specifying the Tasks
	4.6. Specifying Milestones
	4.7. Generating Reports of the scheduled Project
	4.7.1. Generating Interactive Reports
	4.7.2. Generating HTML Reports
	4.7.3. Generating HTML Task Reports
	4.7.4. Generating HTML Resource Reports
	4.7.5. Generating HTML Account Reports
	4.7.6. Generating XML Reports

	Chapter 5. Usage Guide
	5.1. Tracking the Project
	5.1.1. Recording Progress
	5.1.2. Recording Resource Usage

	5.2. Freezing your project as it progresses

	Chapter 6. Language Reference
	6.1. Comments
	6.2. Attribute Classes
	6.2.1. DATE
	6.2.2. DATEINTERVAL
	6.2.3. GLOBALID
	6.2.4. ID
	6.2.5. INTEGER
	6.2.6. LOGICALEXPRESSION
	6.2.7. REAL
	6.2.8. SORTINGCRITERIA
	6.2.9. STRING
	6.2.10. TIME
	6.2.11. TIME
	6.2.12. UNIT
	6.2.13. WEEKDAY

	Chapter 7. Property Reference
	7.1. The TJP File
	7.2. account id name [type]
	7.3. account accountid
	7.4. accumulate
	7.5. allowredefinition
	7.6. allocate resource
	7.7. alternative resource [, resource ...]
	7.8. barlabels mode
	7.9. booking start end task
	7.10. caption text
	7.11. celltext text
	7.12. cellurl url
	7.13. columns columnid [, columnid ...]
	7.14. complete percent
	7.15. copyright text
	7.16. credit date description amount
	7.17. csvaccountreport filename
	7.18. csvresourcereport filename
	7.19. csvtaskreport filename
	7.20. currency text
	7.21. currencyformat negativeprefix negativesuffix thousandseparator fractionseparator fractiondigits
	7.22. dailymax value unit
	7.23. dailyworkinghours hours
	7.24. depends task [, task ...]
	7.25. disabled
	7.26. duration value unit
	7.27. efficiency value
	7.28. effort value unit
	7.29. end date
	7.30. end date
	7.31. endbuffer percent
	7.32. endcredit amount
	7.33. export filename
	7.34. extend property
	7.35. flags flag [, flag ...]
	7.36. flags flag [, flag ...]
	7.37. gapduration value unit
	7.38. gaplength value unit
	7.39. headline text
	7.40. hideaccount logicalexpression
	7.41. hidecelltext expression
	7.42. hidecellurl expression
	7.43. hideresource logicalexpression
	7.44. hidetask logicalexpression
	7.45. htmlaccountreport file
	7.46. htmlresourcereport file
	7.47. htmlstatusreport file
	7.48. htmltaskreport file
	7.49. htmlweeklycalendar file
	7.50. icalreport file
	7.51. include file
	7.52. journalentry date text
	7.53. kotrusid id
	7.54. label text
	7.55. length value unit
	7.56. limits
	7.57. load factor
	7.58. loadunit unit
	7.59. macro id
	7.60. mandatory
	7.61. maxeffort workingdays
	7.62. maxend date
	7.63. maxstart date
	7.64. minend date
	7.65. minstart date
	7.66. milestone
	7.67. note text
	7.68. monthlymax value unit
	7.69. now date
	7.70. numberformat negativeprefix negativesuffix thousandseparator fractionseparator fractiondigits
	7.71. persistent
	7.72. priority value
	7.73. precedes task [, task ...]
	7.74. project id name version start end
	7.75. projectid id
	7.76. projectids projectid [, projectid ...]
	7.77. projection
	7.78. properties property [, property ...]
	7.79. rate value
	7.80. rawhead html
	7.81. rawstylesheet stylesheet
	7.82. rawtail html
	7.83. reference url
	7.84. resource id name
	7.85. resourcereport file
	7.86. responsible resource
	7.87. rollupaccount logicalexpression
	7.88. rollupresrouce logicalexpression
	7.89. rolluptask logicalexpression
	7.90. scenario id name
	7.91. scenario scenarioid
	7.92. scenarios scenarioid [, scenarioid ...]
	7.93. scheduled
	7.94. scheduling type
	7.95. select mode
	7.96. sloppy value
	7.97. shift id name
	7.98. shift shiftid [dateinterval]
	7.99. shorttimeformat format
	7.100. showprojectids
	7.101. sortaccounts criteria [, criteria ...]
	7.102. sortresources criteria [, criteria ...]
	7.103. sorttasks criteria [, criteria ...]
	7.104. start date
	7.105. start date
	7.106. startbuffer percent
	7.107. startcredit amount
	7.108. statusnote text
	7.109. subtitle text
	7.110. subtitleurl url
	7.111. supplement type
	7.112. task id name
	7.113. taskattributes attribute [, attribute ...]
	7.114. taskprefix prefix
	7.115. taskreport file
	7.116. taskroot root
	7.117. timezone zone
	7.118. timeformat format
	7.119. timingresolution value unit
	7.120. title text
	7.121. titleurl url
	7.122. vacation name interval
	7.123. vacation interval
	7.124. version number
	7.125. weeklymax value unit
	7.126. weekstartsmonday
	7.127. weekstartssunday
	7.128. workinghours weekday interval [, interval ...]
	7.129. xmlreport file
	7.130. yearlyworkingdays days

	Chapter 8. The Example: Accounting Software
	Chapter 9. Migrating from TaskJuggler 1.x to 2.x
	9.1. Achiving compatibility
	9.1.1. Syntax changes
	9.1.2. Scheduler changes

	Chapter 10. Questions and Answers
	10.1. General Questions
	10.2. Compiling and installation
	10.3. Usage

	Chapter 11. Copyright
	Chapter 12. Trademarks

