Strong Acids

- Here we are going to talk about strong acid, not concentrated acid
- What is the difference?
- Concentration refers to number of moles in a litre of solution
- What about acid strength - what does it mean?
- What is it that determines the strength of an acid
- Acid strength depends on the number of H^{+} ions an acid can give when dissolved in water
- That is how much of the acid produces H^{+}ions in water
- So, you can have a concentrated solution of a weak acid
- Or, a concentrated solution of a strong acid
- A dilute solution of a strong or weak acid
- According to Bronsted-Lowry definition, an acid is a substance that produces H^{+}when dissolved in water
- $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
- This reaction is reversible
- But HCl ionizes almost completely, such that the reaction can be taken to be almost one way
- $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
- That means HCl gets almost 100% ionized when dissolved in water
- Very little of the reverse reaction takes place
- An acid that does what HCl does - ionizing almost completely, is called a strong acid
- What are other strong acids that you know?
- $\mathrm{H}_{2} \mathrm{SO}_{4}$
- HNO_{3}

Strong Acids and pH

- Remember pH is a measure of the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$or H^{+}ions
- The higher the concentration of H^{+}the more acidic a solution is
- Acidic solutions have a lower pH
- As the concentration of H^{+}increases, the pH gets lower and lower
- Strong acids have their pH towards 0
- Strong acids like HCl have a pH of around 1 to 0 .
- Also, remember: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
- This means -log of a higher concentration of will be a smaller number (lower pH)
- While -log of a lower concentration will give a bigger number (higher pH)
- e.g. Workout pH for the following concentrations
- $\left[\mathrm{H}^{+}\right]=3 \times 10^{-1}$
- $\left[\mathrm{H}^{+}\right]=3 \times 10^{-13}$

-Which

concentration

 between 3×10^{-1} and 3×10^{-13} is higher?-Which one gives a lower pH?
-Which one gives a higher pH ?

A strong acid (with higher concentration of H^{+} ions) has a lower pH value

Working Out pH of a Strong Acid

- If you have HCl solution of concentration 0.001 M and you know that HCl dissociates completely:
- What will be the concentration of H^{+}ions in the solution?
- Remember:
- strong acids ionize almost completely
- Water contributes very little H+ ions - can be ignored
- Because HCl is a strong acid conc of $\mathrm{HCl}=$ Con of H^{+}ions
- Calculate the pH of the HCl solution referred to above

