Bohr described atoms as being like solar system. The electrons orbiting around the nucleus.

- Schrodinger described atomic model with electrons in three dimensions.
- He described where electrons could be found in terms of three coordinates:
- Prinicpal quantum number n
- Angular quantum number l
- Magnetic quantum number m

- Principal Quantum number n
 - Describes the energy level within the atom, i.e. the shell number – 1, 2, 3, etc
- Angular (momentum) quantum number *l*
 - Describes the sublevel in the principal quantum number
 - Sublevels in the atoms are *s*, *p*, *d*, *f*
 - For s sublevel l = 0
 - For p sublevel l = 1
 - For d sublevel l = 2

- Magnetic quantum number m
 - Describes the orbital within the sublevel
 - s has one orbital m = 0
 - p has three orbitals m = -1, 0, +1
 - d has five orbitals m = -2, -1, 0, +1, +2
- The fourth quantum number is the one known as the Spin Quantum number
 - This describes the spin of the electron
 - Electrons in the same orbital must have opposite
 - Possible spins are clockwise and anticlockwise

- Shell number
- Sub-shell
- Energy shift
- Spin

- 1, 2, 3 n (1, 2, 3)
- s, p, d *l* (0, 1, 2)
- -l l $m_l(0;-1,0,1;...)$
- $-\frac{1}{2} \frac{1}{2}$ m_s

n	Principal Quantum number (Shell number – 1, 2, 3,)
l	Orbital shape/angular quantum number (Sub-shell – s (0), p (1) d(2)) 0 – n-1
m _ℓ	Magnetic quantum number (energy shift) - $l - l$
m _s	Electron spin quantum number (electron spin $-\frac{1}{2}$ or $\frac{1}{2}$

$$n = 2 \quad l = 1 \quad m_{l} = 1 \quad ms = -\frac{1}{2}$$

$$n = 2 \quad l = 1 \quad m_{l} = 1 \quad ms = \frac{1}{2}$$

$$n = 2 \quad l = 1 \quad m_{l} = 0 \quad ms = -\frac{1}{2}$$

$$n = 2 \quad l = 1 \quad m_{l} = 0 \quad ms = \frac{1}{2}$$

$$n = 2 \quad l = 1 \quad m_{l} = -1 \quad ms = -\frac{1}{2}$$

$$n = 2 \quad l = 1 \quad m_{l} = -1 \quad ms = \frac{1}{2}$$

$$n = 2 \quad l = 1 \quad m_{l} = -1 \quad ms = \frac{1}{2}$$

$$n = 2 \quad l = 0 \quad m_{l} = 0 \quad ms = -\frac{1}{2}$$

$$n = 1 \quad l = 0 \quad m_{l} = 0 \quad ms = -\frac{1}{2}$$

$$n = 1 \quad l = 0 \quad m_{l} = 0 \quad ms = -\frac{1}{2}$$

$$n = 1 \quad l = 0 \quad m_{l} = 0 \quad ms = \frac{1}{2}$$

n	l	m_l	Orbital	Elements		Shell
n = 1	0	0	1 <i>s</i>	2	} 2	K
n = 2	0	0	2 <i>s</i>	2	l.	L
	1	-1, 0, 1	2p	6	۲ o	
<i>n</i> = 3	0	0	3 <i>s</i>	2	٦	М
	1	-1, 0, 1	3p	6	► 18	
	2	-2, -1, 0, 1, 2	3 <i>d</i>	10	J	
<i>n</i> = 4	0	0	4 <i>s</i>	2	٦	Ν
	1	-1, 0, 1	4p	6	32	
	2	-2, -1, 0, 1, 2	4d	10	52	
	3	-3, -2, -1, 0, 1, 2, 3	4f	14	J	
n = 5	0	0	55	2	٦	0
	1	-1, 0, 1	5p	6	32	
	2	-2, -1, 0, 1, 2	5d	10	52	
	3	-3, -2, -1, 0, 1, 2, 3	5f	14	-	-
	4	-4, -3, -2, -1, 0, 1, 2, 3, 4	5g	18	Unknown	Corresponding lements
<i>n</i> = 6	0	0	6 <i>s</i>	2	1	P
	1	-1, 0, 1	6p	6	► 18	· · · · ·
	2	-2, -1, 0, 1, 2	6d	10	J	
	3	-3, -2, -1, 0, 1, 2, 3	6f	14	1.6	Unknown
	4	-4, -3, -2, -1, 0, 1, 2, 3, 4	68	18	2 200	Elements
	5	-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5	6/1	22	5	\leq
<i>n</i> = 7	0	0	7 <i>s</i>	2	8 }	Q
	1	-1,0,1	71	0	1	
	4	-2, -1, 0, 1, 2	74	14		0
	0	-3, -2, -1, 0, 1, 2, 3	70	19	> 90	Unknown Corresponding
	+ -	-5 -4 -3 -2 -1 0 1 2 3 4 5	76	22	1.000	Elements

Orbital Shapes

- An atomic orbital can be thought of as a picture that would be obtained if we photograph where the electron has been at different times
- i.e. if we would plot the probability of finding an electron at a particular distance from the nucleus in three dimensions
- It is a sort of a cloud around the nucleus
- Orbitals are 3 dimensional structures with complicated features

- The s orbitals are spherical
- The p orbitals are dumbbell shaped

a porbital

p_x orbital

py orbital

pz orbital

Blocks in the Periodic Table

- The periodic table is divided into blocks
 - s block: have valence configuration of s¹ or s²
 - p block: has valence configuration of s² p¹ to s² p⁶
 - d block elements have valence configuration in which d subshells are being filled
- Chemically, elements in the same block show same general characteristics
- e.g. s block elements are all metals with low electronegativity

- P block elements are mixed with some metals on the left, and non-metals on the right
- Between the metals and non-metals found in the p block are the semi-metals (metalloids)
- The d block elements are the transition metals